Combining bioleaching and brine-leaching in metal leaching processes: alternative to conventional

Author(s):  
Tamara Azevedo Schueler ◽  
Daniel Goldmann

<p>The recovery of valuable metals such as copper (Cu), zinc (Zn) and lead (Pb) from mine tailings has gained attention in recent years, mainly for the environmental risk of tailings storage facilities and the demand of such elements in different industrial sectors. Many sulphide tailings deposits are spread worldwide, and some of them belong to active mines, which produce tons of material per year. Leaching is a well-known technology for metal extraction. However, two aspects must be considered: the dissolution of metals involves the use of fresh water and, the tailings contain low metal concentrations and high impurities. As a result, leaching is too expensive due to energy input in water purification and high acid consumption. The use of salt water in mineral extraction processes is becoming more attractive in the mining sectors over the years, especially in regions where fresh water is scarce. The presence of salt water in metal leaching has demonstrated a great capacity to increase metal extraction from ore, for example, by increasing the surface and porosity of copper containing minerals. This phenomenon plays an important role in metal leaching. The formation of a passive layer on the surface of the mineral in oxidizing conditions is a strong barrier in the extraction of the target metal. Conditions that overcome this obstacle are of utmost importance for the mining industry. Furthermore, a combination of conventional leaching systems with biological methods (bioleaching) is shown to be a good strategy in tailings leaching. Bioleaching has been applied to the treatment of poor ores and tailings, since acidophilic bacteria can oxidize Fe<sup>2+</sup> with the regeneration of Fe<sup>3+</sup> ions, together with the reduction of sulphur species to sulfuric acid, leading to the extraction of metals. Moreover, it is considered a more environmentally friendly technology than traditional extraction methods, as it occurs naturally, more economical and results in significantly less pollution. Therefore, some studies have been applying biological leaching as a pre-treatment for chemical leaching of mining tailings. The aim of this work is to present and discuss possibilities to conventional metal extraction processes, combining the two strategies of bioleaching and brine-leaching.</p>

1772 ◽  
Vol 62 ◽  
pp. 90-92 ◽  
Keyword(s):  

The materials necessary for this process are the following; a copper or iron pot of 15 or 20 gallons, an empty cask, some sheet lead, a small jar, a few wood-ashes or soap, and billet-wood for fewel.


2010 ◽  
Vol 66 (2) ◽  
pp. 189-195
Author(s):  
Yuji ITO ◽  
Hideki MIYAMOTO ◽  
Masumi KORIYAMA ◽  
Jiro CHIKUSHI ◽  
Masahiro SEGUCHI

2014 ◽  
Vol 1020 ◽  
pp. 472-477 ◽  
Author(s):  
Vruyr Sargsyan ◽  
Emil Saratikyan

Abstract. Geo-technological extraction methods recently are widely used in the mining industry. Removing the metals from underground ore deposits is carried out by injecting chemicals (solvents, oxidants, reducing agents) into wells drilled in them, and the subsequent extraction of metals from saturated solutions. Particularly, this method utilized for the extraction of uranium from flooded sediments and copper from poor (substandard) ores, as well as some non-ferrous and rare metals from waste dumps and tailings of substandard ore mines and processing enterprises. The paper discusses methods developed for prediction of moisture content (water saturation) in rocks under filtration of liquid with incomplete saturation of pores while changing the concentration of the metal in the liquid phase (in an ore body), as well as problems of dissolution and desorption of metal salts on the surface cracks or pores on ore body based on molecular diffusion equation of metal salts. The present work conducted for developing the methods for calculating the liquid filtration through underground deposits of minerals and forecasting of dissolving and washing out metals. It is shown that the processes which take place with the use of chemical reagents are different comparing to the similar processes with water injection. These data allow to predict the changes in the concentration of salts and metals in the liquid and solid phases depending on time.


1964 ◽  
Vol 90 (6) ◽  
pp. 97-116
Author(s):  
Norbert L. Ackermann ◽  
Pachern Sridurongkatum

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jesica Urbina ◽  
Advait Patil ◽  
Kosuke Fujishima ◽  
Ivan G. Paulino-Lima ◽  
Chad Saltikov ◽  
...  

Abstract Electronics waste production has been fueled by economic growth and the demand for faster, more efficient consumer electronics. The glass and metals in end-of-life electronics components can be reused or recycled; however, conventional extraction methods rely on energy-intensive processes that are inefficient when applied to recycling e-waste that contains mixed materials and small amounts of metals. To make e-waste recycling economically viable and competitive with obtaining raw materials, recovery methods that lower the cost of metal reclamation and minimize environmental impact need to be developed. Microbial surface adsorption can aid in metal recovery with lower costs and energy requirements than traditional metal-extraction approaches. We introduce a novel method for metal recovery by utilizing metal-binding peptides to functionalize fungal mycelia and enhance metal recovery from aqueous solutions such as those found in bioremediation or biomining processes. Using copper-binding as a proof-of-concept, we compared binding parameters between natural motifs and those derived in silico, and found comparable binding affinity and specificity for Cu. We then combined metal-binding peptides with chitin-binding domains to functionalize a mycelium-based filter to enhance metal recovery from a Cu-rich solution. This finding suggests that engineered peptides could be used to functionalize biological surfaces to recover metals of economic interest and allow for metal recovery from metal-rich effluent with a low environmental footprint, at ambient temperatures, and under circumneutral pH.


1968 ◽  
Vol 8 (33) ◽  
pp. 491 ◽  
Author(s):  
RW Strickland

A pot trial to assess the effect of salt water on growth and yield of rice in the Northern Territory of Australia was conducted in 1962-63. Two varieties were irrigated with three levels of salinity for varied durations in either the establishment or reproductive phases. Plant emergence was significantly depressed by soil conductivities in excess of 4 m-mhos/cm at 25�C. The restricted use of up to 3000 p.p.m. total soluble salts from 10 days after emergence and of up to 6000 p.p.m. from 20 days after emergence, followed by fresh water, had no effect on flowering time, vegetative or grain yields. The application of 3000 and 6000 p.p.m. total soluble salts in the reproductive phase reduced mean panicle number and grain yield of both varieties and straw yield of one variety. Use of saline water in the establishment phase followed by fresh water and drainage, reduced soil conductivity. In the reproductive phase it nullified the effect of previous fresh water flushing and tended to increase soil conductivity above original levels.


Sign in / Sign up

Export Citation Format

Share Document