scholarly journals XII. An easy method to distill fresh water from salt water at sea; by Capt. Newland

1772 ◽  
Vol 62 ◽  
pp. 90-92 ◽  
Keyword(s):  

The materials necessary for this process are the following; a copper or iron pot of 15 or 20 gallons, an empty cask, some sheet lead, a small jar, a few wood-ashes or soap, and billet-wood for fewel.

2010 ◽  
Vol 66 (2) ◽  
pp. 189-195
Author(s):  
Yuji ITO ◽  
Hideki MIYAMOTO ◽  
Masumi KORIYAMA ◽  
Jiro CHIKUSHI ◽  
Masahiro SEGUCHI

1964 ◽  
Vol 90 (6) ◽  
pp. 97-116
Author(s):  
Norbert L. Ackermann ◽  
Pachern Sridurongkatum

1968 ◽  
Vol 8 (33) ◽  
pp. 491 ◽  
Author(s):  
RW Strickland

A pot trial to assess the effect of salt water on growth and yield of rice in the Northern Territory of Australia was conducted in 1962-63. Two varieties were irrigated with three levels of salinity for varied durations in either the establishment or reproductive phases. Plant emergence was significantly depressed by soil conductivities in excess of 4 m-mhos/cm at 25�C. The restricted use of up to 3000 p.p.m. total soluble salts from 10 days after emergence and of up to 6000 p.p.m. from 20 days after emergence, followed by fresh water, had no effect on flowering time, vegetative or grain yields. The application of 3000 and 6000 p.p.m. total soluble salts in the reproductive phase reduced mean panicle number and grain yield of both varieties and straw yield of one variety. Use of saline water in the establishment phase followed by fresh water and drainage, reduced soil conductivity. In the reproductive phase it nullified the effect of previous fresh water flushing and tended to increase soil conductivity above original levels.


1960 ◽  
Vol 17 (3) ◽  
pp. 295-322 ◽  
Author(s):  
Bertha Baggerman

In juvenile Pacific salmon the changes in salinity preference associated with seaward migration and thyroid activity were studied and used as criteria for the induction of the physiological condition required for migration (migration-disposition).Four species of Oncorhynchus (chum, pink, coho and sockeye) changed preference from fresh to salt water at the onset of seaward migration and maintained this preference throughout the migration season. At the end of this migration period coho and sockeye salmon changed preference from salt to fresh water if retained in fresh water, indicating a re-adaptation to this medium in which they may survive for several years. Chum and pink fry did not show this change in preference and usually died when retained in fresh water. They were apparently unable to re-adapt to this environment.The increasing day length in spring controls the time at which the change in preference from fresh to salt water takes place, and is thus involved in timing the induction of migration-disposition.The photoperiod seems to affect particularly the pituitary-thyroid system. Thyroid activity increases shortly before the onset of migration, remains high during the migration season, and decreases towards its end. The level of thyroid hormone in the blood influences salinity tolerance and preference and, thus, the induction of migration-disposition. Metamorphosis, osmotic "stress" and iodine content of the water may have some additional effect on thyroid activity, but are not the only factors responsible for thyroid hyperactivity during migration.Animals in which migration-disposition has been induced are thought to have become susceptible to appropriate external stimuli "releasing" migration.


1968 ◽  
Vol 25 (8) ◽  
pp. 1591-1602 ◽  
Author(s):  
S. G. Miles

In an experimental apparatus, elvers of the American eel (Anguilla rostrata) showed a stronger positive rheotaxis to fresh water than to salt water. The attractiveness of the fresh water was due to dissolved and particulate organic matter; these components were bio-degradable, heat stable, and nonvolatile. Four streams near Halifax, Nova Scotia, were tested, and were found to differ greatly in their attraction of elvers. Elvers were collected from each of three of these streams, and were not found to be attracted to their own stream water; elvers from one stream gave a greater rheotactic response than elvers from the other streams. The presence of adult eels in the water rendered it more attractive, whereas the presence of elvers made it less so.


1974 ◽  
Vol 64 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Seelye Martin ◽  
Peter Kauffman

In an experimental and theoretical study, we model a phenomenon observed in the summer Arctic, where a fresh-water layer at a temperature of 0°C floats both over a sea-water layer at its freezing point and under an ice layer. Our results show that the ice growth in this system takes place in three phases. First, because the fresh-water density decreases upon supercooling, the rapid diffusion of heat relative to salt from the fresh to the salt water causes a density inversion and thereby generates a high Rayleigh number convection in the fresh water. In this convection, supercooled water rises to the ice layer, where it nucleates into thin vertical interlocking ice crystals. When these sheets grow down to the interface, supercooling ceases. Second, the presence of the vertical ice sheets both constrains the temperatureTand salinitysto lie on the freezing curve and allows them to diffuse in the vertical. In the interfacial region, the combination of these processes generates a lateral crystal growth, which continues until a horizontal ice sheet forms. Third, because of theTandsgradients in the sea water below this ice sheet, the horizontal sheet both migrates upwards and increases in thickness. From one-dimensional theoretical models of the first two phases, we find that the heat-transfer rates are 5–10 times those calculated for classic thermal diffusion.


Sign in / Sign up

Export Citation Format

Share Document