Vulnerability of Northern Adriatic to Warming and Intensification of Marine Heat Waves

Author(s):  
Matjaz Licer ◽  
Alenka Malej

<p>Northern Adriatic Shelf (NAS) is a shallow, semi-enclosed northern part of the Adriatic basin, and as such rapidly responds to climate change. Multidecadal satellite and in-situ sea surface temperature (SST) time series on the NAS indicate a warming trend. During 1995-2015, SST in the Gulf of Trieste increased at a rate of 0.08°C ± 0.01°C per year (amounting to 1.6°C in 20 years), a trend indicative of the entire NAS shelf.</p><p>We use a centennial SST time series from Trieste (Raicich and Colucci, 2019) to construct a climatological year as a base for SST day-of-year anomaly estimation. We show that yearly number of discrete periods of extreme warming (Marine Heat Waves - MHW) and extreme cooling (Marine Cold Spells - MCS) exhibit clear seasonality. Both positive and negative anomalies from climatological SST manifest maximum variance in the summer months. The frequency of MHW has increased, while the number of Marine Cold Spells (MCS) is declining.</p><p>Sea warming and MHW intensification are potent agents of disturbance, particularly for sessile taxa and species residing near their warm range edges. In the NAS extreme events may force regression of habitat-forming species such as seagrass Zostera marina and increase bleaching episodes of coral Cladocora caespitosa. Warming events may be associated with the inflow of invasive non-indigenous species and expand the period of occurrence, such as harmful gelatinous invader Mnemiopsis leidyi. In contrast, a reduced number of MCS during winter may enhance survival of Aurelia polyps generating through strobilation more intense jellyfish blooms.</p>

2016 ◽  
Author(s):  
Emanuela Fiori ◽  
Marco Zavatarelli ◽  
Nadia Pinardi ◽  
Cristina Mazziotti ◽  
Carla Rita Ferrari

Abstract. The Marine Strategy Framework Directive is pushing for new methodological approaches in order to protect the marine environment more effectively. The trophic index TRIX was developed by Vollenweider in 1998 for the coastal area of Emilia-Romagna (northern Adriatic Sea), and was exploited by Italian legislation to characterize the trophic state of coastal waters. In order to implement TRIX in different areas and for different time periods, we developed a methodology for the generalization of the index changing the scaling parameters. We compared the TRIX index calculated from in situ data ("in situ TRIX") with the corresponding index simulated with a coupled physics and biogeochemical numerical model ("model TRIX") implemented in the overall Adriatic Sea. The comparison between in situ and simulated data was carried out for a data time series in the Emilia-Romagna coastal strip. This study demonstrates the compatibility of the model with the in situ TRIX and the necessity to have time series longer than 10 years to evaluate properly the scaling parameters. The model TRIX is finally calculated for the whole Adriatic Sea showing trophic index differences across the Adriatic coastal areas.


Author(s):  
Heli Einberg ◽  
Riina Klais-Peets ◽  
Arno Põllumäe ◽  
Henn Ojaveer

Abstract Quantification and attribution of the food web changes associated with the invasion of non-indigenous species in the marine realm often remain a challenge. One of the pelagic non-indigenous species of concern in the recent history of aquatic bioinvasions is the predatory cladoceran Cercopagis pengoi, which invaded the Baltic Sea in the early 1990s. While several studies have reported immediate declines in abundances of its potential prey, the long-term effects of C. pengoi on the food webs remain to be examined. Based on the long-term time series (1968–2018) in the Gulf of Riga (Baltic Sea), we found significant declines in abundance of the cladoceran Pleopis spp. and copepod Eurytemora affinis by 90 and 80%, respectively, are associated with the invasion of C. pengoi as well as significant alterations in seasonal abundance patterns of Pleopis spp., E. affinis and cladoceran Bosmina spp. The invasion of the non-indigenous predator has led to the changed prey abundance–temperature relationships. Special caution was taken in data preprocessing, to minimize the likelihood that observed changes in the zooplankton prey could be associated with factors other than the invasion of C. pengoi, such as temperature and storminess.


2016 ◽  
Vol 16 (9) ◽  
pp. 2043-2054 ◽  
Author(s):  
Emanuela Fiori ◽  
Marco Zavatarelli ◽  
Nadia Pinardi ◽  
Cristina Mazziotti ◽  
Carla Rita Ferrari

Abstract. The main scope of the Marine Strategy Framework Directive is to achieve good environmental status (GES) of the EU's marine waters by 2020, in order to protect the marine environment more effectively. The trophic index (TRIX) was developed by Vollenweider in 1998 for the coastal area of Emilia-Romagna (northern Adriatic Sea) and was used by the Italian legislation to characterize the trophic state of coastal waters. We compared the TRIX index calculated from in situ data (“in situ TRIX”) with the corresponding index simulated with a coupled physics and biogeochemical numerical model (“model TRIX”) implemented in the overall Adriatic Sea. The comparison between in situ and simulated data was carried out for a data time series on the Emilia-Romagna coastal strip. This study shows the compatibility of the model with the in situ TRIX and the importance of the length of the time series in order to get robust index estimates. The model TRIX is finally calculated for the whole Adriatic Sea, showing trophic index differences across the Adriatic coastal areas.


2019 ◽  
Author(s):  
Cornelia Jaspers ◽  
Nancy Weiland-Bräuer ◽  
Martin Fischer ◽  
Sven Künzel ◽  
Ruth A. Schmitz ◽  
...  

ABSTRACTThe translocation of non-indigenous species around the world, especially in marine systems, is a matter of concern for biodiversity conservation and ecosystem functioning. While specific traits are often recognized to influence establishment success of non-indigenous species, the impact of the associated microbial community for the fitness, performance and invasion success of basal marine metazoans remains vastly unknown. In this study we compared the microbiota community composition of the invasive ctenophore Mnemiopsis leidyi in different native and invasive sub-populations along with characterization of the genetic structure of the host. By 16S rRNA gene amplicon sequencing we showed that the sister group to all metazoans, namely ctenophores, harbored a distinct microbiota on the animal host, which significantly differed across two major tissues, namely epidermis and gastrodermis. Additionally, we identified significant differences between native and invasive sub-populations of M. leidyi, which indicate, that the microbiota community is likely influenced by the genotypic background of the ctenophore. To test the hypothesis that the microbiota is genotypically selected for by the ctenophore host, experiments under controlled environments are required.


Author(s):  
Henn Ojaveer ◽  
Jonne Kotta ◽  
Okko Outinen ◽  
Heli Einberg ◽  
Anastasija Zaiko ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


2021 ◽  
Author(s):  
Alexander Gershunov ◽  
Janin Guzman Morales ◽  
Benjamin Hatchett ◽  
Kristen Guirguis ◽  
Rosana Aguilera ◽  
...  

AbstractSanta Ana winds (SAWs) are associated with anomalous temperatures in coastal Southern California (SoCal). As dry air flows over SoCal’s coastal ranges on its way from the elevated Great Basin down to sea level, all SAWs warm adiabatically. Many but not all SAWs produce coastal heat events. The strongest regionally averaged SAWs tend to be cold. In fact, some of the hottest and coldest observed temperatures in coastal SoCal are linked to SAWs. We show that hot and cold SAWs are produced by distinct synoptic dynamics. High-amplitude anticyclonic flow around a blocking high pressure aloft anchored at the California coast produces hot SAWs. Cold SAWs result from anticyclonic Rossby wave breaking over the northwestern U.S. Hot SAWs are preceded by warming in the Great Basin and dry conditions across the Southwestern U.S. Precipitation over the Southwest, including SoCal, and snow accumulation in the Great Basin usually precede cold SAWs. Both SAW flavors, but especially the hot SAWs, yield low relative humidity at the coast. Although cold SAWs tend to be associated with the strongest winds, hot SAWs tend to last longer and preferentially favor wildfire growth. Historically, out of large (> 100 acres) SAW-spread wildfires, 90% were associated with hot SAWs, accounting for 95% of burned area. As health impacts of SAW-driven coastal fall, winter and spring heat waves and impacts of smoke from wildfires have been recently identified, our results have implications for designing early warning systems. The long-term warming trend in coastal temperatures associated with SAWs is focused on January–March, when hot and cold SAW frequency and temperature intensity have been increasing and decreasing, respectively, over our 71-year record.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 606
Author(s):  
Daria Sanna ◽  
Ilenia Azzena ◽  
Fabio Scarpa ◽  
Piero Cossu ◽  
Angela Pira ◽  
...  

In the fresh waters of Sardinia (Italy), the non-indigenous crayfish species Procambarus clarkii has been reported from 2005, but, starting from 2019, there have been several reports of a new non-indigenous crayfish in southern and central areas of this Mediterranean island, and its morphology suggests that this species may be the marbled crayfish Procambarus virginalis. Forty-seven individuals of this putative species were analyzed, using the mitochondrial gene Cytochrome c Oxidase subunit I as molecular marker to identify this crayfish and investigate the level of genetic variability within the recently established population. Phylogenetic and phylogeographic analyses were carried out on a dataset including sequences from the Sardinian individuals and from all congenerics available in GenBank. Results showed that the new Sardinian crayfish belong to the species P. virginalis. All the sequences belonging to P. virginalis from European countries are identical, with only few exceptions found among Sardinian individuals. In conclusion, this paper highlights the occurrence of a new further alien species in the Sardinian fresh waters, which are already characterized by the high presence of non-indigenous species.


Sign in / Sign up

Export Citation Format

Share Document