Extended Observations and New Insights of Dynamically Triggered Tremor in Parkfield

Author(s):  
Allie Hutchison ◽  
Piero Poli

<p>We create an extended catalog of dynamically triggered tremor in the Parkfield region of the San Andreas Fault for teleseismic and regional earthquakes from 2001-2020 with a magnitude threshold of M >7. After selection of clear dynamic triggering episodes, each tremor event is precisely located using a multi station approach. Using this new catalog of triggered tremor, we quantitatively evaluate the conditions under which tremor is triggered. In particular, we study the effect of frequency dependent peak dynamic strain, peak ground velocity, and the incident azimuth of triggering waves. We further try to assess if the triggering potential in the San Andreas Fault evolves as function of time. Finally, we search for differences and similarities (e.g. frequency content, location) between triggered and regular tremor. Our observations provide new insights about the physical conditions necessary for triggering tremor, and in general, on the physical processes generating non-volcanic tremors.</p>

1996 ◽  
Vol 86 (5) ◽  
pp. 1417-1433
Author(s):  
T. L. Teng ◽  
J. Qu

Abstract During a big earthquake along the San Andreas fault in southern California, high excitation and low attenuation of long-period (3 to 10 sec) strong ground motions will cause wave motions to propagate efficiently far from the epicentral area. These ground motions could potentially be destructive to large-dimension structures in the Los Angeles basin. We performed calculations using the surface-wave Gaussian beam method for a 3D southern California crustal structure. Displacement field as well as the associated dynamic strain field produced by large propagating ruptures along the San Andreas fault are evaluated. Results indicate that in the presence of lateral heterogeneity, focusing and multipathing interference contribute significantly to a complex pattern of the displacement field and the associated dynamic strain field. For a big event on the San Andreas fault with a seismic moment of 1.8 × 1028 dyne-cm, long-period displacement in the Los Angeles basin could reach a maximum amplitude of meters in places. Since this calculation is fast, we have evaluated the displacement field for a dense grid of points; a differentiation gives the corresponding effective horizontal dynamic strain field. At times, the maximum effective dynamic strains may reach mid-10−3 to even 10−3—high enough to be of engineering concern. This computational result probably gives the upper bound values due to the large source assumed. For events of smaller seismic moment release along less extensive ruptures, these results can easily be scaled down proportionally. Different scenarios are considered in this study with different slip distributions. It is found that with a given seismic moment, a more evenly distributed fault slip over the rupture surface will result in lower peak values on both displacements and dynamic strains. Our displacement results give similar values to those obtained by Kanamori using empirical Green's functions but substantially higher than Bouchon and Aki's results.


1995 ◽  
Vol 10 ◽  
pp. 415-418
Author(s):  
G. Mathys

Frequently, the atmospheres of stars of spectral types B to F, on which the attention is particularly focussed in this Joint Discussion, are characterized by non-standard physical conditions: non-solar abundance patterns, surface in homogeneities, strong magnetic fields. The most extreme anomalies are found in the chemically peculiar (CP) stars but more moderate departures from standard atmospheres are observed in many stars in the considered temperature range. This can affect the derivation of fundamental stellar parameters in a number of ways, some of which will be presented in this contribution. The emphasis is set on those physical processes which are specific to CP stars. Due to lack of space, this review is necessarily incomplete: a selection of recent results of interest will be pointed out and some directions of investigation will be suggested.CP stars have an anomalous continuous energy distribution. Fitting this distribution by standard model atmospheres can only be achieved using models corresponding to different effective temperatures to represent different spectral ranges (e.g., Leone & Catalano 1991). This is obviously not physically meaningful: the effective temperature characterizes the total flux of a star, thus is unique. “Realistic” models must incorporate the anomalous elemental abundances. Such models are presently being developed by Kurucz (ATLAS12) and by the Vienna group (Weiss 1994, private communication). The latter is adapted from Muthsam’s (1979) code. One important result obtained by Muthsam is that the relation T(τ) appears steeper in magnetic Ap stars than in normal stars. This view recently received support from observations of rapid oscillations (Matthews et al. 1990). But even such realistic models may not represent satisfactorily CP star atmospheres, as some potentially important opacity sources may still be unknown. For instance, the broad continuum depressions observed in many magnetic CP stars have not been fully explained yet.


1993 ◽  
Author(s):  
Sandra S. Schulz ◽  
Robert E. Wallace

Sign in / Sign up

Export Citation Format

Share Document