Anisotropic fragmentation of shrinking thin layers on a substrate

Author(s):  
Roland Szatmári ◽  
Ferenc Kun

<p>Layers of dense pastes, colloids attached to a substrate often undergo sequential cracking due to shrinkage stresses caused by desiccation. From the spectacular crack patterns of dried out lake beds through the polygonal ground patterns of permafrost regions to the formation of columnar joints in cooling volcanic lava, shrinkage induced cracking is responsible for a large variety of complex crack structures in nature. Under laboratory conditions this phenomenon is usually investigated by desiccating thin layers of dense colloidal suspensions in a container, which typically leads to polygonal crack patterns with a high degree of isotropy.</p><p>It is of great interest how to control the structure of shrinkage induced two-dimensional crack patterns also due to its high importance for technological applications. Recently, it has been demonstrated experimentally for dense calcium carbonate and magnesium carbonate hydroxide pastes that applying mechanical excitation by means of vibration or flow of the paste the emerging desiccation crack pattern remembers the direction of excitation, i.e. main cracks get aligned and their orientation can be tuned by the direction of mechanical excitation.</p><p>In order to understand the mechanism of this memory effect, we investigate a fragmentation process of a brittle, cylindrical sample, where the driving force of the cracking coming from a continous shrinkage, which sooner or later destroys the cohesive forces between the structure’s building blocks. Our study is based on a two dimensional discrete element model, where the material is discretised via a special form of the Voronoi-tesselation, with the so-called randomised vector lattice which allows to fine-tune the initial disorder of the system. We assume that the initial mechanical vibration imprints plastic deformation into the paste, which is captured in the model by assuming that the local cohesive strength of the layer has a directional dependence: the layer is stronger along the direction of vibration. We demonstrate that - based on this simple assumption - the model well reproduces the qualitative features of the anisotropic crack patterns observed in experiments. Gradually increasing the degree of anisotropy the system exhibits a crossover from an isotropic cellular structure to an anisotropic one.</p>

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246453
Author(s):  
Connor Murphy ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Wei Li

Bottom-up self-assembly of components, inspired by hierarchically self-regulating aggregation of small subunits observed in nature, provides a strategy for constructing two- or three-dimensional intriguing biomimetic materials via the spontaneous combination of discrete building blocks. Herein, we report the methods of ultrasonic wave energy-assisted, fast, two- and three-dimensional mesoscale well-ordered self-assembly of microfabricated building blocks (100 μm in size). Mechanical vibration energy-driven self-assembly of microplatelets at the water-air interface of inverted water droplets is demonstrated, and the real-time formation process of the patterned structure is dynamically explored. 40 kHz ultrasonic wave is transferred into microplatelets suspended in a water environment to drive the self-assembly of predesigned well-ordered structures. Two-dimensional self-assembly of microplatelets inside the water phase with a large patterned area is achieved. Stable three-dimensional multi-layered self-assembled structures are quickly formed at the air-water interface. These demonstrations aim to open distinctive and effective ways for new two-dimensional surface coating technology with autonomous organization strategy, and three-dimensional complex hierarchical architectures built by the bottom-up method and commonly found in nature (such as nacre, bone or enamel, etc.).


1977 ◽  
Vol 12 (1) ◽  
pp. 233-255
Author(s):  
J.F. Sykes ◽  
A.J. Crutcher

Abstract A two-dimensional Galerkin finite element model for flow and contaminant transport in variably saturated porous media is used to analyze the transport of chlorides from a sanitary landfill located in Southern Ontario. A representative cross-section is selected for the analysis. Predicted chloride concentrations are presented for the cross section at various horizon years.


2021 ◽  
Vol 50 (12) ◽  
pp. 4152-4158
Author(s):  
Kai-Ping Xie ◽  
Si-Guo Wu ◽  
Long-Fei Wang ◽  
Guo-Zhang Huang ◽  
Zhao-Ping Ni ◽  
...  

The first spin-crossover example of a two-dimensional coordination polymer containing [Pd(SCN)4]2− building blocks was explored.


2021 ◽  
Vol 7 (23) ◽  
pp. eabf9402
Author(s):  
Katherine C. Elbert ◽  
William Zygmunt ◽  
Thi Vo ◽  
Corbin M. Vara ◽  
Daniel J. Rosen ◽  
...  

The use of nanocrystal (NC) building blocks to create metamaterials is a powerful approach to access emergent materials. Given the immense library of materials choices, progress in this area for anisotropic NCs is limited by the lack of co-assembly design principles. Here, we use a rational design approach to guide the co-assembly of two such anisotropic systems. We modulate the removal of geometrical incompatibilities between NCs by tuning the ligand shell, taking advantage of the lock-and-key motifs between emergent shapes of the ligand coating to subvert phase separation. Using a combination of theory, simulation, and experiments, we use our strategy to achieve co-assembly of a binary system of cubes and triangular plates and a secondary system involving two two-dimensional (2D) nanoplates. This theory-guided approach to NC assembly has the potential to direct materials choices for targeted binary co-assembly.


2014 ◽  
Vol 580-583 ◽  
pp. 3208-3214 ◽  
Author(s):  
Zhen Wei Xiong ◽  
Xin Ling Liang ◽  
Xian Xing Dai ◽  
Ping Wang

when the ballast track stretch with the bridge, ballast which is near expansion joint will move confusedly. As a result, rail produced vertical deformation. The deformation will affect the running safety and comfortability of train. At present, there are two kinds of treatments which are cover board structure and baffle structure to deal ballast’s movement. Aiming at the different modes of stretching when the two kinds of structures and different arrangement condition of bridge plate are applied, the rail-sleeper-ballast discrete element model is developed by the method of two-dimensional granular flow. The relationship between rail deformation and bridge expansion is analyzed on the foundation of the model. Results show as flows: when bridge extends or shortens, rail always produced upwarp deformation. Bridge plate should arrange asymmetrically. Like this, the rail deformation decrease by 40%. And adopting the baffle structure can effectively reduce the influence of bridge expansion in ballast truck.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2005 ◽  
Vol 95 (19) ◽  
Author(s):  
Jesús Santana-Solano ◽  
Angeles Ramírez-Saito ◽  
José Luis Arauz-Lara

Sign in / Sign up

Export Citation Format

Share Document