A message from the depth: the origin of the amphibole crystal clots with pyroxene cores in the Late Pleistocene Ciomadul dacites, Romania

Author(s):  
Barbara Cserép ◽  
Zoltán Kovács ◽  
Kristóf Fehér ◽  
Szabolcs Harangi

<p>Identification of trans-crustal magma reservoir processes beneath volcanoes is a crucial task to better understand the behaviour and possible future activities of volcanic systems. Detailed petrological investigations have a fundamental role in such studies. Dacitic magmas are usually formed in an upper crustal magma reservoir by complex open-system processes including crystal fractionation and magma mixing following recharge events. Conditions of such processes are usually constrained by crystal-scale studies, whereas there is much less information about the petrogenetic processes occurring in the lower crustal hot zone. Here we provide insight into such processes by new results on amphibole crystal clots found in dacitic pumices from an explosive volcanic suite of the Ciomadul volcano, the youngest one in eastern-central Europe.</p><p>Amphibole is a common mineral phase of the Ciomadul dacites, occuring as phenocrysts and antecrysts, but occasionally they also form crystal clots with an inner core of either pyroxene or olivine with high Mg-numbers. Olivine is observed mostly in the 160-130 ka lava dome rocks, whereas the younger explosive eruption products are characterised by orthopyroxene and clinopyroxene. Such mafic crystal clots are most common in the pumices of the earliest explosive eruptions, which occurred after long quiescence at 56-45 ka. The most common appearance has high-Mg pyroxene core (mg#: 0.76-0.92) rimmed by amphibole. Two types of amphibole are found in such clots: irregular zone of actinolite to magnesio-hornblende directly around orthopyroxene and high Mg-Al pargasitic amphibole as the outer zone. Several crystal clots contain smaller amphibole crystals with diffuse transition to clinopyroxene at the inner part and complexly zoned amphibole with biotite inclusions in the outer part. These amphibole and pyroxene have lower Mg-number (< 0.80), and higher MnO content (up to 0.52 wt%) than the most common type. In both cases, amphibole could be a peritectic product of earlier-formed pyroxenes, which reacted with water-rich melt at higher and lower temperatures, respectively. Actinolite to magnesio-hornblende at the contact represents a transitional phase between pyroxene and the newly formed amphibole. In a few cases, crystal clots contain amphibole inclusions in pyroxene macrocrysts. These amphiboles have a particular composition not yet reproduced by experiments: they have high mg# (>0.86), but low tetrahedral Al (0.9-1.0 apfu) and usually high Cr content (Cr<sub>2</sub>O<sub>3</sub> is up to 0.9 wt%), similar to the orthopyroxene and clinopyroxene hosts (0.26-0.71 and 0.78-0.89 wt%, respectively). We interpret these amphiboles as an early formed liquidus phase crystallized along with pyroxene from an ultra-hydrous mafic magma. Occasionally, crystal clots are complexly zoned amphibole macrocrysts with dispersed clinopyroxene inclusions. The amphibole has a wide compositional range, usually with high Mg-Al pargasitic core. These amphiboles could have formed by peritectic reaction between clinopyroxene and a water-rich melt.</p><p>The observed mafic crystal clots in the dacites indicate the presence of strongly hydrous mafic magmas accumulated probably at the crust-mantle boundary. During mafic recharge, volatile transfer may contribute to the crystal mush rejuvenation at shallow depth and triggering explosive eruptions.</p><p>This research was financed by the Hungarian National Research, Development and Innovation Fund (NKFIH) within K135179 project.</p>

2012 ◽  
Vol 53 (4) ◽  
pp. 801-840 ◽  
Author(s):  
Philipp Ruprecht ◽  
George W. Bergantz ◽  
Kari M. Cooper ◽  
Wes Hildreth

Nature ◽  
1977 ◽  
Vol 267 (5609) ◽  
pp. 315-318 ◽  
Author(s):  
Stephen R. J. Sparks ◽  
Haraldur Sigurdsson ◽  
Lionel Wilson

1984 ◽  
Vol 19 (2) ◽  
pp. 55-89 ◽  
Author(s):  
N.M. Dubrovsky ◽  
K.A. Morin ◽  
J.A. Cherry ◽  
D.J.A. Smyth

Abstract Investigations of the geochemistry of inactive pyritic uranium tailings in the Elliot Lake Mining district of Ontario have focused on the Nordic tailings management area, where two impoundments are located in natural bedrock basins. The tailings are 8-12 m thick and overlie a localized deposit of glaciofluvial sands. Analyses of the solid, liquid, and gas phases in the vadose zone of the tailings show that gas-phase oxygen levels drop rapidly within 0.7 to 1.5 m of the surface, indicating rapid oxygen consumption during pyrite oxidation. Oxidation during the past 15 to 20 years has caused a marked depletion of near-surface pyrite. The oxidation of pyrite in the vadose zone imparts to infiltrating precipitation high concentrations of Fe, SO42-, various heavy metals, and a pH generally between 1.5 and 4. The acidic infiltration moves downward at a rate of 0.2 to 2.0 m/yr, displacing high-pH groundwater that originated as process water discharged from the mill. It now occupies the entire tailings thickness over a small area of the tailings. At one location a well-defined plume of high-Fe2+ tailings-derived groundwater has developed in the sand aquifer adjacent to the tailings. The plume consists of three zones: an inner core characterized by Fe > 5000 mg/L, pH < 4.8, and elevated concentrations of several heavy metals and radionuclides; an outer zone with Fe < 2500 mg/L, pH > 5.5, and relatively low concentrations of heavy metals and radionuclides; and a transition zone separating the two. Although the average linear groundwater velocity is about 440 m/yr near the dam, reactions such as mineral dissolution, precipitation and coprecipitation retard the migration of the front of the inner core, producing an observed frontal migration rate of approximately 1 m/yr. Groundwater from the outer zone of the plume flows laterally towards a small stream, where a portion of it is now discharging into the stream bed. The discharge results in the precipitation of amorphous ferric hydroxide on the stream bed. Most of the H+ produced by Fe precipitation is buffered, and only a moderate decrease in stream pH is observed. Inner zone conditions will not reach the stream unless input of low-pH groundwater from the tailings continues for several hundred years. Although the rate of pyrite oxidation in the Nordic Main tailings has been decreasing, there is sufficient pyrite in the tailings to generate high-Fe groundwater for several decades or more. Calculated groundwater migration rates indicate that in the next few decades acidic, low-pH groundwater will occupy the entire tailings thickness over most of the tailings area, causing an increase in the total flux of contaminated groundwater into the underlying aquifer. The outer zone of the plume has already arrived at a small stream, and acidification of the surface waters may increase if the Fe concentration in the groundwater seepage increases.


2020 ◽  
Vol 57 (9) ◽  
pp. 1011-1029
Author(s):  
Gabriel Sombini dos Santos ◽  
Sandra M. Barr ◽  
Chris E. White ◽  
Deanne van Rooyen

The Margaree pluton extends for >40 km along the axis of the Ganderian Aspy terrane of northern Cape Breton Island, Nova Scotia. The pluton consists mainly of coarse-grained megacrystic syenogranite, intruded by small bodies of medium-grained equigranular syenogranite and microgranite porphyry, all locally displaying rapakivi texture. The three rock types have similar U–Pb (zircon) ages of 363 ± 1.6, 364.8 ± 1.6, and 365.5 ± 3.3 Ma, respectively, consistent with field and petrological evidence that they are coeval and comagmatic. The rare earth elements display parallel trends characterized by enrichment in the light rare earth elements, flat heavy rare earth elements, moderate negative Eu anomalies, and, in some cases, positive Ce anomalies. The megacrystic and rapakivi textures are attributed to thermal perturbation in the magma chamber caused by the mixing of mafic and felsic magma, even though direct evidence of the mafic magma is mainly lacking at the current level of exposure. Magma evolution was controlled by fractionation of quartz, K-feldspar, and Na-rich plagioclase in molar proportions of 0.75:0.12:0.13. The chemical and isotopic (Sm–Nd) signature of the Margaree pluton is consistent with the melting of preexisting continental crust that was enriched in heat-producing elements, likely assisted by intrusion of mantle-derived mafic magma during Late Devonian regional extension. The proposed model involving magma mixing at shallow crustal levels in a cryptic silicic-mafic magma chamber during post-Acadian extension is consistent with models for other, better exposed occurrences of rapakivi granite in the northern Appalachian orogen.


1988 ◽  
Vol 52 (367) ◽  
pp. 435-450 ◽  
Author(s):  
Paul Martin Holm ◽  
Niels-Ole Prægel

AbstractThe Kærven syenite complex, which reflects the hitherto earliest recorded stages in the Tertiary of East Greenland, outcrops in the middle reaches of the Kangerdlugssuaq Fjord as a peripheral intrusion to the Kangerdlugssuaq intrusion. The rocks of the Kærven complex range from syenite through alkali feldspar quartz-syenite to alkali feldspar granite. The general sequence of crystallization of the Kærven magmas was: alkali feldspar ± olivine(Fa96−99) ± plagioclase(An41−11), clinopyroxene (augite, ferrosalite, ferrohedenbergite), quartz and amphibole. Whole-rock major and trace-element data show coherent geochemical trends which suggest comagmatism. The data reveal that the Kærven rocks are distinct from the rocks from the adjacent Kangerdlugssuaq intrusion (e.g. higher TiO2, FeOT in low-SiO2 samples, lower Na2O, approx. constant Zr/Nb). The mineral chemistry supports this conclusion, as the Kærven samples typically have calcic amphiboles and clinopyroxenes with a very limited Na-enrichment in contrast to the sodic trends of the Kangerdlugssuaq intrusion. Normative feldspar compositions plot near to the Ab-Or cotectic in the Q-Ab-Or system and a maximum pressure of crystallization of 3–5 kbar with moderate to low PH2O is indicated.Trace elements preferently incorporated in plagioclase and alkali feldspar, i.e. Sr, Ba and Rb, show systematics which are not compatible with an evolution of the rock suite by crystal fractionation of these phases, though possibly alkali feldspar may be partially accumulated in a few very evolved rocks. Numerical calculations do not suggest a magmatic evolution by fractional crystallization of the observed phases. The variation of Sr, Ba and Rb as well as of the incompatible elements Nb, Zr and Th support a derivation of the rock suite mainly by mixing two components, a syenitic and a granitic end-member. It is concluded that magma mixing was the most significant process in the formation of the Kærven rock suite accompanied by some crystal fractionation. Evidence for crustal contamination is detected in a few samples from the outer part of the intrusion but has not affected the main suite of rocks.


2013 ◽  
Vol 6 (10) ◽  
pp. 866-870 ◽  
Author(s):  
Suzanne M. Carbotte ◽  
Milena Marjanović ◽  
Helene Carton ◽  
John C. Mutter ◽  
Juan Pablo Canales ◽  
...  

Author(s):  
H. P. Zeck

ABSTRACTApproximately 10-15 vol% of the Neogene Hoyazo dacite consists of Al-rich restite rock inclusions (A12O3 = 20–45%) and monocrystal inclusions derived therefrom. Restite material and dacitic melt were formed syngenetically from a (semi-)pelitic rock sequence by means of anatexis. Restite rock fragments and dacite show similar high δ18O values (13–16‰) corresponding to those found for sedimentary material. Striking monocrystal restite inclusions in the dacite rock are graphite crystals measuring a few hundred μm, 0.5–10 mm blue cordierite crystals and 2–10 mm ruby red crystals of almandine-rich garnet (1.1 ± 0.2 vol%). Although the almandine crystals are perfectly euhedral, they are identical in every respect to the crystals found in the Al-rich restite rock inclusions and cannot be crystallisation products of the magmatic melt. The dacite also contains many inclusions of quartz gabbroic and basaltoid material which contains inclusions identical to the restite material found in the dacitic glass base. Many basaltoid inclusions show well-developed chilled borders. These inclusions may represent a more mafic magma of deeper origin which mixed with some dacite magma before mingling into it.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 519d-519
Author(s):  
A. Otero ◽  
R. Perry ◽  
F. Ewers ◽  
R.T. Fernandez

A swelling of the rootstock shank, described as Root Mass Proliferation, has been frequently found in the field on apple trees of Mark rootstock. Swelling usually first appears on trees after they have been established for more than 3 years. The abnormal growth occurs above the soil line on the exposed rootstock shank and it extends to a depth of 10 - 15 cm below soil. Anatomical studies were conducted on maiden nursery trees and trees having been in the orchard for 3 to 6 years with light microscopy. In older trees, changes in normal tissue development occurred in the 2-4 cm outer zone of the swelling surface. Changing direction and proportion of xylem components gives an appearance of tracheiry elements developing in a circular pattern. Abnormal xylem parenchyma seems to have its origin at the xylem parenchyma rays, which follow a straight plain of cell division. Clusters of lignified root initiation points are often found in the outer part of xylem, all around the rootstock shank. Removal of bark and phloem exposes hard nodules, which were found to consist of tracheiry elements surrounded by lignified parenchyma cells all between xylem and phloem tissue encircling the rootstock shank. Abnormal development of xylem vessels suggests that there is an anatomical association between water transport and a reported physiological drought sensitivity of trees on this rootstock.


Sign in / Sign up

Export Citation Format

Share Document