Effects of warming, elevated CO2, and drought on root water uptake and its relation to root traits

Author(s):  
Maud Tissink ◽  
Jesse Radolinski ◽  
David Reinthaler ◽  
Erich Pötsch ◽  
Michael Bahn

<p>Plants can modulate the source and magnitude of water uptake under environmental stresses, ultimately constraining water and energy fluxes across Earth’s surface. These alterations are scarcely quantified for future climatic scenarios such as warming, elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>), and droughts—all projected by the end of this century. Here we use diurnal soil moisture dynamics throughout the 2019 growing season to quantify the impacts of these three global change factors on root water uptake in a managed C<sub>3</sub> mountain grassland in Austria; a key agricultural landscape within central Europe. To determine whether plants alter water uptake via root trait adjustments, we then compared water uptake to root morphological traits. We expected that 1) drought and eCO<sub>2</sub> (+300 ppm) would reduce root water uptake relative to ambient conditions due to supply limitation and a lower stomatal conductance, whereas 2) greater vapor pressure gradients in warmed systems would elevate transpiration rates, increasing root water uptake. Plants reduced water uptake in droughted plots by ~35% regardless of other factors applied, due to decreased water extraction from the soil surface during the peak drought. Warmed plots had unexpectedly lower water uptake by 17-25% relative to control plots. Finally, vegetation in eCO<sub>2</sub> plots displayed similar water uptake to plots under ambient conditions; however, eCO<sub>2</sub> effects did buffer warming effects, such that plots with eCO<sub>2 </sub>and warming extracted less water than those subjected to warming alone. Root morphological traits showed strong linear correlations (R > 0.7, or R < -0.7) to root water uptake in ambient, drought, and eCO<sub>2</sub> plots, yet no significant relationship was found for plots under warming or multifactor treatments. Relationships were strongest and most abundant following a drought. This suggests that—though plants may optimize root structure for drought recovery—plants may alter their root systems to account for resource limitations other than water in a warming climate. Altogether, we show that warming, eCO<sub>2</sub>, and droughts may significantly alter the root water extraction in managed C<sub>3</sub> mountain grasslands, but changes in water availability alone may not fully explain plant water uptake responses.</p>

2010 ◽  
Vol 02 (03n04) ◽  
pp. 163-184 ◽  
Author(s):  
SAHAR HEMMATI ◽  
BEHROUZ GATMIRI ◽  
YU-JUN CUI ◽  
MARC VINCENT

Ground settlement can damage light buildings supported by shallow foundations through cracking. The prediction and modeling of tree roots effect on soil water content and consequently the soil settlements needs a comprehensive analysis of the interactions between tree roots, soil, and water. Root water uptake by trees depends on soil conditions, climatic parameters, and vegetation type. A two-dimensional root-water-uptake model is implemented in a fully coupled thermo-hydro-mechanic finite element program, θ-STOCK. Evapotranspiration from the soil surface covered by grasses is calculated using energy balance and water balance on the surface of soil. The tree roots are modeled as sink terms which are distributed vertically for homogeneous canopy such as forests, or laterally in the case of single tree or a row of trees. The distribution of sink term depends of geometry of root zone and type of canopy. Two case studies are used for verification of implemented model by comparing the modeling results with the measured water content reduction in the zones influenced by tree roots. The soil settlements due to these water content reductions are also calculated.


2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2010 ◽  
Vol 97 (9) ◽  
pp. 1382-1388 ◽  
Author(s):  
Derblai Casaroli ◽  
Quirijn de Jong van Lier ◽  
Durval Dourado Neto

1995 ◽  
Vol 177 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Peter J. Thorburn ◽  
James R. Ehleringer

Sign in / Sign up

Export Citation Format

Share Document