SOIL–VEGETATION–ATMOSPHERE INTERACTION BY A MULTIPHYSICS APPROACH

2010 ◽  
Vol 02 (03n04) ◽  
pp. 163-184 ◽  
Author(s):  
SAHAR HEMMATI ◽  
BEHROUZ GATMIRI ◽  
YU-JUN CUI ◽  
MARC VINCENT

Ground settlement can damage light buildings supported by shallow foundations through cracking. The prediction and modeling of tree roots effect on soil water content and consequently the soil settlements needs a comprehensive analysis of the interactions between tree roots, soil, and water. Root water uptake by trees depends on soil conditions, climatic parameters, and vegetation type. A two-dimensional root-water-uptake model is implemented in a fully coupled thermo-hydro-mechanic finite element program, θ-STOCK. Evapotranspiration from the soil surface covered by grasses is calculated using energy balance and water balance on the surface of soil. The tree roots are modeled as sink terms which are distributed vertically for homogeneous canopy such as forests, or laterally in the case of single tree or a row of trees. The distribution of sink term depends of geometry of root zone and type of canopy. Two case studies are used for verification of implemented model by comparing the modeling results with the measured water content reduction in the zones influenced by tree roots. The soil settlements due to these water content reductions are also calculated.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 35 ◽  
Author(s):  
Lisma Safitri ◽  
Hermantoro Hermantoro ◽  
Sentot Purboseno ◽  
Valensi Kautsar ◽  
Satyanto Saptomo ◽  
...  

Various issues related to oil palm production, such as biodiversity, drought, water scarcity, and water and soil resource exploitation, have become major challenges for environmental sustainability. The water footprint method indicates that the quantity of water used by plants to produce one biomass product could become a parameter to assess the environmental sustainability for a plantation. The objective of this study is to calculate the water footprint of oil palm on a temporal scale based on root water uptake with a specific climate condition under different crop age and soil type conditions, as a means to assess environmental sustainability. The research was conducted in Pundu village, Central Kalimantan, Indonesia. The methodology adopted in carrying out this study consisted of monitoring soil moisture, rainfall, and the water table, and estimating reference evapotranspiration (ETo), root water uptake, and the oil palm water footprint. Based on the study, it was shown that the oil palm water usage in the observation area varies with different crop ages and soil types from 3.07–3.73 mm/day, with the highest contribution of oil palm water usage was in the first root zone which correlates to the root density distribution. The total water footprint values obtained were between 0.56 and 1.14 m3/kg for various plant ages and soil types. This study also found that the source of green water from rainfall on the upper oil palm root zone delivers the highest contribution to oil palm root water uptake than the blue water from groundwater on the bottom layer root zone.


2015 ◽  
Vol 19 (1) ◽  
pp. 409-425 ◽  
Author(s):  
M. Guderle ◽  
A. Hildebrandt

Abstract. Understanding the role of plants in soil water relations, and thus ecosystem functioning, requires information about root water uptake. We evaluated four different complex water balance methods to estimate sink term patterns and evapotranspiration directly from soil moisture measurements. We tested four methods. The first two take the difference between two measurement intervals as evapotranspiration, thus neglecting vertical flow. The third uses regression on the soil water content time series and differences between day and night to account for vertical flow. The fourth accounts for vertical flow using a numerical model and iteratively solves for the sink term. None of these methods requires any a priori information of root distribution parameters or evapotranspiration, which is an advantage compared to common root water uptake models. To test the methods, a synthetic experiment with numerical simulations for a grassland ecosystem was conducted. Additionally, the time series were perturbed to simulate common sensor errors, like those due to measurement precision and inaccurate sensor calibration. We tested each method for a range of measurement frequencies and applied performance criteria to evaluate the suitability of each method. In general, we show that methods accounting for vertical flow predict evapotranspiration and the sink term distribution more accurately than the simpler approaches. Under consideration of possible measurement uncertainties, the method based on regression and differentiating between day and night cycles leads to the best and most robust estimation of sink term patterns. It is thus an alternative to more complex inverse numerical methods. This study demonstrates that highly resolved (temporally and spatially) soil water content measurements may be used to estimate the sink term profiles when the appropriate approach is used.


2014 ◽  
Vol 11 (9) ◽  
pp. 10859-10902 ◽  
Author(s):  
M. Guderle ◽  
A. Hildebrandt

Abstract. Understanding the role of plants for soil water relations, and thus for ecosystem functioning, requires information about root water uptake. We evaluated four different complex water balance methods to estimate sink term patterns and evapotranspiration directly from soil moisture measurements. We tested four methods: the first two take the difference between two measurement intervals as evapotranspiration, thus neglecting vertical flow. The third uses regression on the soil water content time series and differences between day and night to account for vertical flow. The fourth accounts for vertical flow using a numerical model and iteratively solves for the sink term. Neither of those methods requires any a priori information of root distribution parameters or evapotranspiration, which is the advantage, compared to common root water uptake models. To test the methods, a synthetic experiment with numerical simulations for a grassland ecosystem was conducted. Additionally, the time series were perturbed to simulate common sensor errors, like those due to measurement precision and inaccurate sensor calibration. We tested each method for a range of measurement frequencies and applied performance criteria to evaluate the suitability of each method. In general, we show that methods accounting for vertical flow predict evapotranspiration and the sink term distribution more accurately than the simpler approaches. Under consideration of possible measurement uncertainties, the method based on regression and differentiating between day and night cycles leads to the best and most robust estimation of sink term patterns. It is thus an alternative to more complex inverse numerical methods. This study demonstrates that highly resolved (temporal and spatial) soil water content measurements may be used to estimate the sink term profiles when the appropriate approach is used.


2021 ◽  
Vol 9 (1) ◽  
pp. 31-40
Author(s):  
Lisma Safitri ◽  
Andiko Putro Suryotomo ◽  
Satyanto Krido Saptomo

The lack of water resource in these past decades encourages the implementation of the precision agriculture system towards the sustainability in palm oil plantation. Therefore, it requires a specific information about the palm oil performance regarding the water balance system that affect the water consumption through the plant root water uptake. However, the prediction of root water uptake distribution is still a challenge. Another method to investigate the soil water dynamics under the plant root system is through the numerical simulations that are widely use to assess the soil water flow of the plant. In alignment with the idea of promoting the sustainable palm oil plantation, the investigation of root water uptake and water content under oil palm tree is highly demanding. As an introduction, through this study, it is find of interest to simulate the root water uptake and water content pattern of oil palm tree using the 2D simulation soil-water flow.  The study was performed by applying the 2D simulation soil-water flow model to 17th year old oil palm tree located in Siak, Riau with the loam soil type. The climate data was used as primary data to predict the rate of evapotranspiration. The soil properties and root dimension and distribution of oil palm was taken by the literature study. The simulation over 30 days illustrated the root water uptake distribution, water content change, pressure head and flow velocity. The most intensive root water uptake occurred in the upper root zone of oil palm tree as an impact of the higher root density. The significant root water uptake in the upper root zone lead to the decreasing of water content and increasing of pressure head in the soil.  Consequently, there was a change of water flow direction from the wet area in the downward and sideward do dry root zone as the water supply to the oil palm tree.  


1987 ◽  
Vol 35 (3) ◽  
pp. 395-406
Author(s):  
C. Dirksen

With closed, high-frequency irrigation systems, the water supply can be tailored to the instant needs of plants. To be able to do this optimally, it is necessary to understand how plants interact with their environment. To study water uptake under a variety of non-uniform conditions in the root zone, lucerne was grown in laboratory soil columns with automated gamma ray attenuation, tensiometer and salinity sensor equipment to measure soil water contents, pressure potentials and osmotic potentials, respectively. The columns were irrigated with water of different salinity at various frequencies and leaching fractions. This paper presents results obtained in a column irrigated daily with water of conductivity 0.33 S/m (h0 = -13.2 m) at a target leaching fraction of 0.08. This includes the drying and wetting patterns under daily irrigations in deficit and excess of evapotranspiration, respectively. After 230 days the salination of the column had still not reached a steady state. Salinity increased rapidly with depth and root water uptake was shallow for the deep-rooting lucerne. Water and salt transport under daily irrigation cannot be described without taking hysteresis of soil water retention into account. The data presented are suitable for testing various water uptake models, once numerical water and salt transport models of the required complexity are operational. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2014 ◽  
Vol 41 (11) ◽  
pp. 1129 ◽  
Author(s):  
Mutez A. Ahmed ◽  
Eva Kroener ◽  
Maire Holz ◽  
Mohsen Zarebanadkouki ◽  
Andrea Carminati

As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm–3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 228
Author(s):  
M. A. Hamza ◽  
S. H. Anderson ◽  
L. A. G. Aylmore

Although measurements of water drawdown by single radish root systems have been previously published by the authors, further research is needed to evaluate water drawdown patterns in multiple-root systems. The objective of this study was to compare water transpiration patterns estimated using X-ray computed tomography (CT) with the traditional gravimetric method and to evaluate the effects of variably spaced multiple root systems on soil water content and corresponding water content gradients. Water drawdown showed a dual pattern in which it increased rapidly when soil water content was high at the beginning of transpiration, then slowed down to an almost constant level with time as water content decreased. These results contrast with the single-root system wherein transpiration rates initially increased rapidly and then slowly increased with time. Water uptake estimated using the CT method was observed to be 27–38% lower than the gravimetrically estimated water uptake; this difference was attributed to lower water uptake for the upper 30 mm layer (CT measured) than lower layers due to differences in root density. However, good correlation (r = 0.97) was found between both measurement methods. The drawdown patterns for multiple root systems showed a convex shape from the root surface to the bulk soil, compared with a nearly linear shape for single roots. The water content drawdown areas and the drawdown distances for multiple root systems were found to be much larger than those corresponding to single radish roots. Differential water content gradients were observed for roots spaced at 15-mm distances compared with 3–4-mm distances. These differential gradients from the bulk soil towards the root-zone occurred probably creating localised water potential gradients within the root-zone, which moved water from between roots to root surfaces. The lowest water content values were located in the inter-root areas. The CT-scanned layer probably acted as one drawdown area with particularly higher water drawdown from the inter-root areas.


2003 ◽  
Vol 39 (11) ◽  
Author(s):  
F. Hupet ◽  
S. Lambot ◽  
R. A. Feddes ◽  
J. C. van Dam ◽  
M. Vanclooster

Sign in / Sign up

Export Citation Format

Share Document