Mineral and Trace Element Identification in Jezero Crater, Mars, with SuperCam’s Time-Resolved Raman (TRR) and Luminescence (TRL) Techniques

Author(s):  
Ann Ollila ◽  
Olivier Beyssac ◽  
Gorka Arana ◽  
Stanley Mike Angel ◽  
Karim Benzerara ◽  
...  

<p>In February 2021, NASA’s Perseverance rover will begin its exploration of Jezero crater near a putative ancient delta. Orbital mineralogy indicates the presence of carbonates and clay minerals in the landing site, which will be key targets for study. The SuperCam instrument provides an important tool for remotely surveying for these and other minerals using multiple techniques: Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR) and Luminescence (TRL) spectroscopies, Visible-Near Infrared (VisIR) spectroscopy, micro-imaging, and acoustics. TRR and TRL use a pulsed 532 nm laser with an adjustable gate width, from 100 ns to several ms. The time at which the gate opens is also adjustable, from coincident with the laser pulse to obtain Raman and fast luminescence out to 10 ms or more to capture the lifetimes of luminescence signals. These techniques will operate at distances up to 7 m from the rover mast and will be most effective if LIBS first removes dust from the targets and chemistry is subsequently obtained at the same location. Early lab results show that TRR is effective for detecting certain carbonates (magnesite, hydromagnesite, siderite, ankerite, calcite, and dolomite), sulfates (gypsum, anhydrite, barite, epsomite, and coquimbite), phosphates (apatite), and silicates (e.g., quartz, feldspar, forsteritic olivine, topaz, and diopside). Many of these minerals are high-priority targets for astrobiology studies because they represent habitable environments and have high biosignature preservation potential in terrestrial rocks. Raman signal strength is significantly decreased in fine-grained materials, however, and clay minerals will be a challenge to detect, as will opaque minerals such as Fe-oxides. TRL will be useful for identifying rare earth elements in phosphates and zircon, Fe<sup>3+ </sup>in silicates such as feldspar, Mn<sup>2+</sup> in carbonates, and Cr<sup>3+</sup> in Al-oxides and some silicates. TRL may also be able to identify fast (<100 ns) fluorescence that may indicate the presence of organic materials, which could then be analyzed more closely with the rover’s other instruments. Early results from the Jezero crater will be presented, if available.   </p>

Author(s):  
David J. Hwang ◽  
Hojeong Jeon ◽  
Costas P. Grigoropoulos

In this study, detailed characteristics of the optical near-field based ablation-induced plasma are investigated. A Cr thin metal film samples are ablated using visible and near infrared nanosecond laser pulses coupled through an optical near-field fiber probe. The ablated plasma evolution is visualized through time-resolved emission imaging and further analyzed via spectral measurement. Unveiled qualitative differences in optical near-field ablation configuration are discussed in comparison with optical far-field ablation. The measured results support implementation of laser-induced breakdown spectroscopy based on optical near-field ablation.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
S. Maurice ◽  
R. C. Wiens ◽  
P. Bernardi ◽  
P. Caïs ◽  
S. Robinson ◽  
...  

AbstractOn the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.


1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


2007 ◽  
Vol 62 (12) ◽  
pp. 1329-1334 ◽  
Author(s):  
Matthieu Baudelet ◽  
Myriam Boueri ◽  
Jin Yu ◽  
Samuel S. Mao ◽  
Vincent Piscitelli ◽  
...  

AIP Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 065214 ◽  
Author(s):  
Kaimin Guo ◽  
Anmin Chen ◽  
Wanpeng Xu ◽  
Dan Zhang ◽  
Mingxing Jin

Sign in / Sign up

Export Citation Format

Share Document