Potential of Sentinel and high resolution EO data for monitoring nature protection in cities – the SeMoNa22 project

Author(s):  
Anna Iglseder ◽  
Markus Immitzer ◽  
Christoph Bauerhansl ◽  
Hannes Hoffert-Hösl ◽  
Klaus Kramer ◽  
...  

<p><span><span>At the end of the 1980s the Municipal Department for Environmental Protection of Vienna - MA 22 initiated a detailed biotope mapping on the basis of the Viennese nature conservation law. Approximately 40 % of Vienna’s city area were covered, however only 2 % of the densely populated areas. This biotope mapping was the basis for the biotope types mapping (2005-2011) and of </span></span><span><span>the</span></span><span><span> green areas monitoring (2005). An update of these surveys has been planned in order to meet the various requirements of urban nature conservation and the national and international, respectively, legal monitoring and reporting obligations.</span></span></p><p><span><span>Since the 1970s the municipality of Vienna has built up a comprehensive database and uses state-of-the-art methods for collecting geodata carrying out services for surveying, airborne imaging and laser-scanning. Currently systems for mobile mapping, oblique aerial photos and a surveying flight with a single photon LiDAR system are being implemented or prepared. Because of the numerous high-resolution data available within the municipality and limitations mainly in spatial resolution of satellite data, the City of Vienna saw no need or benefit in integrating satellite images until now.</span></span></p><p><span><span>However, satellite data are now available within the European Copernicus program, which have considerable potential for monitoring green spaces and biotope types due to their high temporal resolution and the large number of spectral channels and SAR data. For the first time, the Sentinel-1 mission offers a combination of high spatial resolution in Interferometric Wide Swath (IW) recording mode and high temporal coverage of up to four shots every 12 days in cross-polarization in the C-band. The Sentinel-2 satellites deliver multispectral data in 10 channels every 5 days with spatial resolutions of 10 or 20 m.</span></span></p><p><span><span>Within the SeMoNa22 project, various indicators are derived for the Vienna urban area (2015-2020) and used for object-oriented mapping and classification of biotope types and characterization of the green space:</span></span></p><ul><li> <p><span><span>Sentinel-1 data (→ time series on the annual cycles in the backscattering properties of the vegetation, phenology),</span></span></p> </li> <li> <p><span><span>Sentinel-2 data (→ multispectral time series via parameters for habitat classification / vegetation indices),</span></span></p> </li> <li> <p><span><span>High-resolution earth observation data (airborne laser scanning (ALS), image matching, orthophoto → various parameter describing the horizontal and vertical vegetation structure).</span></span></p> </li> </ul><p><span><span>The main goals of SeMoNa22 is to explore efficient and effective ways of knowing if, how and to what extent the data collected can form the basis and become an integrative part of urban conservation monitoring. For this purpose, combinations of different earth observation data (satellite- and aircraft- supported or terrestrial sensors) and existing structured fieldwork data collections (species mapping, soil parameters, meteorology) are examined by means of pixel- and object-oriented methods of remote sensing and image processing. The study is done for several test sites in Vienna covering different ecosystems. In this contribution the ongoing SeMoNa22 project will be presented and first results will be shown and discussed.</span></span></p>

2020 ◽  
Author(s):  
Gary Watmough ◽  
Amy Campbell ◽  
Charlotte Marcinko ◽  
Cheryl Palm ◽  
Jens-Christian Svenning

<p>Planning for disaster responses and targeting interventions to mitigate future problems requires frequent, up-to-date data on social, economic and ecosystem conditions. Monitoring socioeconomic conditions using household survey data requires national census enumeration combined with annual sample surveys on consumption and socioeconomic trends, the cost of which is prohibitive. We examine the role that Earth Observation (EO) data could have in mapping poverty in rural areas by exploring two questions; (i) can household wealth be predicted from RS data? (ii) What role can EO data play in future geographic targeting of resources? Here, we demonstrate that satellite data can predict the poorest households in a landscape in Kenya with 62% accuracy. When using a multi-level approach, a 10% increase in accuracy was achieved compared to previously used single-level methods which do not consider how landscapes are utilised in as much detail. EO derived data on buildings within a family compound (homestead), amount of bare agricultural land surrounding a homestead, amount of bare ground inside the homestead and the length of growing season were important predictor variables. A multi-level approach to link RS and household data allows more accurate mapping of homestead characteristics, local land uses and agricultural productivity. High-resolution EO data could provide a limited but significant contribution to geographic targeting of resources, especially when sudden changes occur that require targeted responses. The increasing availability of high-resolution satellite data and volunteered geographic data means this method can be modified and upscaled to larger scales in the future.</p><p> </p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1310
Author(s):  
Gabriele Bitelli ◽  
Emanuele Mandanici

The exponential growth in the volume of Earth observation data and the increasing quality and availability of high-resolution imagery are increasingly making more applications possible in urban environments [...]


Data ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 35
Author(s):  
Jonas Ardö

Earth observation data provide useful information for the monitoring and management of vegetation- and land-related resources. The Framework for Operational Radiometric Correction for Environmental monitoring (FORCE) was used to download, process and composite Sentinel-2 data from 2018–2020 for Uganda. Over 16,500 Sentinel-2 data granules were downloaded and processed from top of the atmosphere reflectance to bottom of the atmosphere reflectance and higher-level products, totalling > 9 TB of input data. The output data include the number of clear sky observations per year, the best available pixel composite per year and vegetation indices (mean of EVI and NDVI) per quarter. The study intention was to provide analysis-ready data for all of Uganda from Sentinel-2 at 10 m spatial resolution, allowing users to bypass some basic processing and, hence, facilitate environmental monitoring.


2020 ◽  
Vol 12 (19) ◽  
pp. 3209
Author(s):  
Yunan Luo ◽  
Kaiyu Guan ◽  
Jian Peng ◽  
Sibo Wang ◽  
Yizhi Huang

Remote sensing datasets with both high spatial and high temporal resolution are critical for monitoring and modeling the dynamics of land surfaces. However, no current satellite sensor could simultaneously achieve both high spatial resolution and high revisiting frequency. Therefore, the integration of different sources of satellite data to produce a fusion product has become a popular solution to address this challenge. Many methods have been proposed to generate synthetic images with rich spatial details and high temporal frequency by combining two types of satellite datasets—usually frequent coarse-resolution images (e.g., MODIS) and sparse fine-resolution images (e.g., Landsat). In this paper, we introduce STAIR 2.0, a new fusion method that extends the previous STAIR fusion framework, to fuse three types of satellite datasets, including MODIS, Landsat, and Sentinel-2. In STAIR 2.0, input images are first processed to impute missing-value pixels that are due to clouds or sensor mechanical issues using a gap-filling algorithm. The multiple refined time series are then integrated stepwisely, from coarse- to fine- and high-resolution, ultimately providing a synthetic daily, high-resolution surface reflectance observations. We applied STAIR 2.0 to generate a 10-m, daily, cloud-/gap-free time series that covers the 2017 growing season of Saunders County, Nebraska. Moreover, the framework is generic and can be extended to integrate more types of satellite data sources, further improving the quality of the fusion product.


Sign in / Sign up

Export Citation Format

Share Document