Biogeochemical disruptions across the Cretaceous-Paleogene boundary : insights from sulfur isotopes

Author(s):  
Arbia Jouini

<p><strong>Biogeochemical disruptions across the Cretaceous-Paleogene boundary : insights from sulfur isotopes</strong></p><p> </p><p>Arbia JOUINI<sup>1*</sup>, Guillaume PARIS<sup>1</sup>, Guillaume CARO<sup>1</sup>, Annachiara BARTOLINI<sup>2</sup></p><p><sup>1 </sup>Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, UMR7358, ,15 rue Notre Dame des Pauvres, BP20, 54501Vandoeuvre-lès-Nancy, France, email:[email protected]</p><p><sup>2</sup> Muséum National D’Histoire Naturelle, Département Origines & Evolution, CR2P MNHN, CNRS, Sorbonne Université, 8 rue Buffon CP38, 75005 Paris, France</p><p> </p><p>The Cretaceous–Paleogene (KPg) mass extinction event 66 million years ago witnessed one of the ‘Big Five’ mass extinctions of the Phanerozoic. Two major catastrophic events, the Chicxulub asteroid impact and the Deccan trap eruptions, were involved in complex climatic and environmental changes that culminated in the mass extinction including oceanic biogenic carbonate crisis, sea water chemistry and ocean oxygen level changes. Deep understanding of the coeval sulfur biogeochemical cycle may help to better constrain and quantify these parameters.</p><p>Here we present the first stratigraphic high resolution isotopic compositions of carbonate associated sulfate (CAS) based on monospecific planktic and benthic foraminifers' samples during the Maastrichtian-Danian transition from IODP pacific site 1209C. Primary δ34SCAS data suggests that there was a major perturbation of sulfur cycle around the KPg transition with rapid fluctuations (100-200kyr) of about 2-4‰ (±0.54‰, 2SD) during the late Maastrichtian followed by a negative excursion in δ34SCAS of 2-3‰ during the early Paleocene.</p><p>An increase in oxygen levels associated with a decline in organic carbon burial, related to a collapse in primary productivity, may have led to the early Paleocene δ34SCAS negative shift via a significant drop in microbial sulfate reduction. Alternatively, Deccan volcanism could also have played a role and impacted the sulfur cycle via direct input of isotopically light sulfur to the ocean. A revised correlation between δ34SCAS data reported in this study and a precise dating of the Deccan volcanism phases would allow us to explore this hypothesis.</p><p>Keywords : KPg boundary, Sulphur cycle, cycle du calcium, Planktic and benthic foraminifera</p><p> </p>

2021 ◽  
Author(s):  
Thierry Adatte ◽  
Gerta Keller ◽  
Jorge E. Spangenberg ◽  
Paula Mateo ◽  
Jahnavi Punekar ◽  
...  

<p>The Chicxulub impact in Mexico and Deccan volcanism in India are both linked to the end-Cretaceous mass extinction but the relative timing of the impact, volcanic eruptions, and environmental changes remain controversial, precluding a full assessment of their respective roles. Mercury anomalies within the stratigraphic record have recently been proposed as atmospheric fallout of continental large igneous provinces (LIPs), and these anomalies are associated with all five major mass extinctions in Earth’s history. If this proxy is robust, it could provide a record of volcanism directly correlated to mass extinctions and in the case of the End-extinction, the Chicxulub impact. To test this hypothesis, we analyzed mercury in the late Maastrichtian from the base of C29r to the Cretaceous-Paleogene boundary (KPB) n the astronomically tuned Elles section in Tunisia, and correlate this chemostratigraphic record with recent high-precision U-Pb geochronology of Deccan volcanism. Our results support that Hg is a robust indicator of LIP volcanism, and directly links Deccan volcanism to rapid global climate changes, ocean acidification and increasing environmental stress during the last 320-340 kyr of the Maastrichtian. Furthermore, our time-resolved Hg record and U-Pb resolved eruption volumes reveal paroxysmal volcanic eruptions (~30% by volume) during the final 35 kyr leading up to the KPB mass extinction.</p>


2021 ◽  
Author(s):  
Manfredo Capriolo ◽  
Andrea Marzoli ◽  
László E Aradi ◽  
Sara Callegaro ◽  
Jacopo Dal Corso ◽  
...  

<p>Throughout Earth’s history, the coincidence in time between Large Igneous Province eruptions and mass extinctions points out a potential causality, where volcanic degassing may drive the global-scale climatic and environmental changes leading to biotic crises. The volcanic activity of the Central Atlantic Magmatic Province (CAMP, ca. 201 Ma), one of Earth’s most voluminous Large Igneous Provinces, is synchronous with the end-Triassic mass extinction event, among the most severe extinctions during the Phanerozoic. Combining different in situ analytical techniques (optical microscopy, confocal Raman microspectroscopy, EMP, SEM-EDS, and NanoSIMS analyses), bubble-bearing melt inclusions within basaltic rocks revealed the abundance of CO<sub>2</sub> (up to 1.0 wt.%) in CAMP magmas [1]. Gaseous CO<sub>2 </sub>and solid elemental C, alternatively preserved by gas exsolution bubbles within melt inclusions mainly hosted in clinopyroxene crystal clots, represent direct evidence for large amounts of volcanic CO<sub>2</sub> (up to 10<sup>5</sup> Gt) emitted into Earth’s surface during the entire CAMP activity [1]. The entrapment conditions of these melt inclusions within clinopyroxene aggregates constrain the degassed CO<sub>2</sub> to a mantle and/or lower-middle crustal origin, indicating a deep source of carbon which may favour rapid and intense CAMP eruption pulses. Each magmatic pulse may have injected CO<sub>2</sub> into the end-Triassic atmosphere in amounts similar to those projected for the anthropogenic emissions during the 21<sup>st</sup> century [1]. Therefore, volcanic CO<sub>2</sub> degassed during CAMP eruptions likely contributed to end-Triassic global warming and ocean acidification with catastrophic consequences for the biosphere.</p><p> </p><p>[1] Capriolo et al. (2020), Nat. Commun. <strong>11</strong>, 1670.</p>


2020 ◽  
Author(s):  
Gerta Keller

<p>The Cretaceous–Paleogene boundary (KTB or KPB) mass extinction is primarily known for the<br>demise of the dinosaurs, the Chicxulub impact, and the rancorous forty-year-old controversy<br>over the cause of this mass extinction. For the first 30 years, the controversy primarily revolved<br>around the age of the impact claimed as precisely KTB based on the assumption that it caused<br>the mass extinction. The iridium (Ir) anomaly at the KTB was claimed proof of the asteroid<br>impact, but no Ir was ever associated with impact evidence and recent findings reveal no<br>extraterrestrial component in PGEs or the KTB Ir anomaly. Impact melt rock glass spherules are<br>also claimed as indisputable evidence of the KTB age impact, but such spherule layers are<br>commonly reworked from the primary (oldest) layer in late Maastrichtian, KTB and Danian<br>sediments; thus only the oldest impact spherule layer documented near the base of zone CF1<br>~200 ky below the KTB can approximate the impact’s age. Similarly, the impact breccia in the<br>Chicxulub impact crater predates the KTB. The best age derived from Ar/Ar dating of impact<br>glass spherules is within 200 ky of the KTB and thus no evidence for the KTB age. All evidence<br>strongly suggests the Chicxulub impact most likely predates the mass extinction ~ 200 ky and<br>played no role in it.<br>Deccan volcanism (LIP) was dismissed as potential cause or even contributor to the KTB mass<br>extinction despite the fact that all other mass extinctions are associated with Large Igneous<br>Province (LIP) volcanism but none with an asteroid impact. During the last decade, Deccan<br>volcanism gained credence based on a succession of discoveries: 1) the mass extinction in<br>between the longest Deccan lava flows across India; 2) high-precision dating of the entire<br>sequence of Deccan volcanism based on UPb zircon dating; 3) recognition of four distinct<br>eruption pulses all related to global climate warming with the largest pulse beginning 20 ky prior<br>to and ending at the KTB; 4) Identifying the climate link to Deccan volcanism based on age<br>dating and mercury from Deccan eruptions in marine sediments; and 5) Identifying the KTB<br>mass extinction directly related to the major Deccan eruption pulse, hyperthermal warming and<br>ocean acidification all linked to global mercury fallout from Deccan eruptions in marine<br>sediments. Despite this remarkable culmination of evidence, the controversy continues with<br>impact proponents arguing that Deccan volcanism didn’t exist at the KTB – the impact was the<br>sole cause.</p>


2017 ◽  
Vol 114 (23) ◽  
pp. 5941-5945 ◽  
Author(s):  
Virgil Pasquier ◽  
Pierre Sansjofre ◽  
Marina Rabineau ◽  
Sidonie Revillon ◽  
Jennifer Houghton ◽  
...  

The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial−interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial−interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial−interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Manfredo Capriolo ◽  
Andrea Marzoli ◽  
László E. Aradi ◽  
Michael R. Ackerson ◽  
Omar Bartoli ◽  
...  

AbstractExceptional magmatic events coincided with the largest mass extinctions throughout Earth’s history. Extensive degassing from organic-rich sediments intruded by magmas is a possible driver of the catastrophic environmental changes, which triggered the biotic crises. One of Earth’s largest magmatic events is represented by the Central Atlantic Magmatic Province, which was synchronous with the end-Triassic mass extinction. Here, we show direct evidence for the presence in basaltic magmas of methane, generated or remobilized from the host sedimentary sequence during the emplacement of this Large Igneous Province. Abundant methane-rich fluid inclusions were entrapped within quartz at the end of magmatic crystallization in voluminous (about 1.0 × 106 km3) intrusions in Brazilian Amazonia, indicating a massive (about 7.2 × 103 Gt) fluxing of methane. These micrometre-sized imperfections in quartz crystals attest an extensive release of methane from magma–sediment interaction, which likely contributed to the global climate changes responsible for the end-Triassic mass extinction.


2020 ◽  
Author(s):  
Ali Uygar Karabeyoglu ◽  
Thierry Adatte ◽  
Valentin Lorenzo ◽  
Jorge Spangenberg ◽  
Sevinç Özkan Altıner ◽  
...  

<p>Recent multi-disciplinary efforts demonstrate a correlation between continental flood basalt (CFB) volcanism and major environmental catastrophes associated with four out of the five largest Phanerozoic mass extinctions. Unique among these is the end-Cretaceous mass extinction, which is potentially coincident with both the Chicxulub bolide impact and the Deccan volcanism. Among these two drivers, the role of the Deccan volcanism is crucial in order to decipher if there is a causal relationship between volcanism and environmental stress, and if so, how stressed the environment was during the latest Maastrichtian. To assess the cause-and-effect relationship between Deccan volcanism and climate change and mass extinctions, high-resolution biostratigraphy, quantitative species analysis coupled with geochemical measurements have been performed on complete sections of Mudurnu-Göynük and Haymana basins (Turkey).</p><p>In both basins Maastrichtian sedimentation is characterized by monotonous mudstones, which sharply in turn to marl-calcareous mudstone alternations in the earliest Danian. Detailed quantitative study on planktonic foraminifera of the Haymana Basin revealed that planktonic foraminiferal community in the latest Maastrichtian is dominated by ecological generalists with small, simple morphologies (e.g., Heterohelix, Globigerinelloides, Guembelitria). Among them low oxygen tolerant Heterohelix globulosa is the most dominant taxa and their abundance changing with the presence of stress marker Guembelitria cretacea. In all sections, the K/Pg boundary itself is characterized by 2-3 mm thick reddish oxidized layer which corresponds to sudden annihilation of large, ornamented ecological specialists (e.g., Globotruncana, Rugoglobigerina, Racemiguembelina). Right after the boundary, there is an acme of calcareous dinoflagellate cysts (Thoracosphaera) and a surge of Guembelitria cretacea indicate ecosystem collapse in post-K/Pg environment.</p><p>On the other hand, detailed quantitative analysis shows a systematic reduction in the species richness throughout the Plummerita hantkeninoides Zone corresponding to the final 150 kyr of the Cretaceous. Proliferations of the Guembelitria cretacea through late Maastrichtian is known as an indicator of high terrigenous influx; therefore, enhanced food resources. The high sedimentation rates observed in all the studied sections might be linked to increased greenhouse conditions due to Deccan volcanism leading to enhanced weathering. Overall, our multiproxy approach including quantitative biostratigraphy and geochemical analyses highlights the influence of the Deccan volcanism by releasing high amounts of atmospheric CO<sub>2</sub> and SO<sub>2</sub>, leading to the climatic changes and associated biotic stress, which predisposed faunas to eventual extinction at the K/Pg boundary.</p>


1994 ◽  
Vol 7 ◽  
pp. 437-466
Author(s):  
Erle G. Kauffinan

Mass extinction is characterized by the loss of more than 50 percent of the world's species within a short interval of geologic time - months to as much as 3 million years (My). In the fossil record, these events have primarily been recorded from the marine realm. Three patterns of mass extinction have been described - catastrophic, stepwise, and graded extinction. Many well-studied extinction intervals contain elements of more than one pattern, suggesting that these biotic crises were caused by varied forcing mechanisms linked by complex environmental feedback loops. This hypothesis is supported by the discovery that the four well-studied Phanerozoic mass extinctions (Late Devonian, middle and terminal Cretaceous, Eocene-Oligocene boundary extinctions) share a number of physical, chemical, and biological characteristics in common. They consistently show stepwise extinction patterns linked to intervals of extraordinary fluctuations in the temperature, chemistry and structure of ocean-climate systems, at rates and magnitudes well above background levels. In addition, tropical ecosystems were the first and most severely affected, and more poleward, temperate biotas were mainly stressed during the later phases of the extinction interval. Evidence for these unusual environmental changes is derived from high-resolution (cm-scale) paleobiological, sedimentological, trace-element and stable-isotope analyses spanning mass extinction intervals. These dramatic environmental fluctuations were the immediate causes of mass extinction, as they progressively exceeded the survival limits of global biotas largely adapted to warm, equable, ice-free climates which characterized over 90 percent of Phanerozoic time. These environmental fluctuations probably represented feedback phenomena from more powerful, short-term forcing mechanisms which abruptly perturbed the structure of ocean-climate systems. Multiple impacts of extraterrestrial objects within short (<1-3 My) time intervals - so-called meteorite/comet showers - are the most logical candidates. This hypothesis is supported by physical and chemical evidence for impacts clustered around most, but not all, Mesozoic and Cenozoic mass extinctions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Virgil Pasquier ◽  
David A. Fike ◽  
Itay Halevy

AbstractSulfur cycling is ubiquitous in sedimentary environments, where it mediates organic carbon remineralization, impacting both local and global redox budgets, and leaving an imprint in pyrite sulfur isotope ratios (δ34Spyr). It is unclear to what extent stratigraphic δ34Spyr variations reflect local aspects of the depositional environment or microbial activity versus global sulfur-cycle variations. Here, we couple carbon-nitrogen-sulfur concentrations and stable isotopes to identify clear influences on δ34Spyr of local environmental changes along the Peru margin. Stratigraphically coherent glacial-interglacial δ34Spyr fluctuations (>30‰) were mediated by Oxygen Minimum Zone intensification/expansion and local enhancement of organic matter deposition. The higher resulting microbial sulfate reduction rates led to more effective drawdown and 34S-enrichment of residual porewater sulfate and sulfide produced from it, some of which is preserved in pyrite. We identify organic carbon loading as a major influence on δ34Spyr, adding to the growing body of evidence highlighting the local controls on these records.


2019 ◽  
Vol 47 (1) ◽  
pp. 275-303 ◽  
Author(s):  
Matthew E. Clapham ◽  
Paul R. Renne

Flood basalts were Earth's largest volcanic episodes that, along with related intrusions, were often emplaced rapidly and coincided with environmental disruption: oceanic anoxic events, hyperthermals, and mass extinction events. Volatile emissions, both from magmatic degassing and vaporized from surrounding rock, triggered short-term cooling and longer-term warming, ocean acidification, and deoxygenation. The magnitude of biological extinction varied considerably, from small events affecting only select groups to the largest extinction of the Phanerozoic, with less-active organisms and those with less-developed respiratory physiology faring especially poorly. The disparate environmental and biological outcomes of different flood basalt events may at first order be explained by variations in the rate of volatile release modulated by longer trends in ocean carbon cycle buffering and the composition of marine ecosystems. Assessing volatile release, environmental change, and biological extinction at finer temporal resolution should be a top priority to refine ancient hyperthermals as analogs for anthropogenic climate change. ▪ Flood basalts, the largest volcanic events in Earth history, triggered dramatic environmental changes on land and in the oceans. ▪ Rapid volcanic carbon emissions led to ocean warming, acidification, and deoxygenation that often caused widespread animal extinctions. ▪ Animal physiology played a key role in survival during flood basalt extinctions, with reef builders such as corals being especially vulnerable. ▪ The rate and duration of volcanic carbon emission controlled the type of environmental disruption and the severity of biological extinction.


Sign in / Sign up

Export Citation Format

Share Document