Evaluating the Effect of Green Infrastructure in Mitigating the Urban Heat Island Effect Using Remote Sensing

Author(s):  
Sofia Fidani ◽  
Ioannis Daliakopoulos ◽  
Thrassyvoulos Manios ◽  
Manolis Grillakis ◽  
Vasiliki Charalampopoulou ◽  
...  

<p>Urban green infrastructure in the form of green roofs and vertical gardens is gradually becoming a mainstream development option to mitigate the negative impacts of dense urbanization, and primarily those associated with the urban heat island effect and the consequent vulnerability due to climate change (Nektarios and Ntoulas, 2017). Nevertheless, the quantification of the effect of green infrastructure in comparison to conventional infrastructure as well as tree parks and gardens, can be a challenge in a rapidly changing urban environment, especially due to historical gaps in environmental parameter monitoring. Here we propose the use of land surface temperature (LST) [<sup>o</sup>C] produced using freely available LandSat imagery at 30 m resolution, to evaluate the effect of green infrastructure on urban surface temperature. The method relies on the comparison of historical LST timeseries of an area of interest which has undergone urban greening interventions with adjacent city blocks that have retained their conventional urban character. The method is applied to evaluate the impact of the recently constructed Eco Campus Orange (ECO) garden, which has resulted from the renovation of 4 city blocks in Paris, France. Within an area over 3 ha, ECO employs environmentally friendly materials and 100,000 plants to feature 2,300 m<sup>2</sup> of green wall and “the largest green roof of Europe”. For the area of interest, over 250 LandSat 5, 7, and 8 multispectral images dating from 2010 to 2020, were analyzed after Ermida et al. (2020). Results show that, since its construction, LST at ECO quickly dropped by over 2 <sup>o</sup>C, reaching the LST levels of adjacent urban parks. The method is ideal for ambient temperature timeseries reconstruction where long-term monitoring is sparce and can be applied to evaluate drastic landscape changes such as urban greening or vegetation thinning.</p><p><strong>References</strong></p><p>Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.M., Trigo, I.F., 2020. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. https://doi.org/10.3390/RS12091471</p><p>Nektarios, P.A., Ntoulas, N., 2017. Designing green roofs for arid and semi-arid climates. The route towards the adaptive approach, in: Acta Horticulturae. International Society for Horticultural Science, pp. 197–202. https://doi.org/10.17660/ActaHortic.2017.1189.39</p><p><strong>Acknowledgements</strong></p><p>The research was co-financed by the European Union and Greek national funds through the Operational Program RIS3Crete (COMPOLIVE: ΚΡΗΡ3-0028773)</p><p>The research of MG was co-financed by the European Union and Greek national funds through the Operational Program "Human Resource Development, Education and Lifelong Learning", under the Act "STRENGTHENING post-doctoral fellows / researchers - B cycle" (MIS 5033021) implemented by the State Scholarship Foundation.</p>

2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 123 ◽  
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

There is growing attention to the use of greenery in urban areas, in various forms and functions, as an instrument to reduce the impact of human activities on the urban environment. The aim of this study has been to investigate the use of green roofs as a strategy to reduce the urban heat island effect and to improve the thermal comfort of indoor and outdoor environments. The effects of the built-up environment, the presence of vegetation and green roofs, and the urban morphology of the city of Turin (Italy) have been assessed considering the land surface temperature distribution. This analysis has considered all the information recorded by the local weather stations and satellite images, and compares it with the geometrical and typological characteristics of the city in order to find correlations that confirm that greenery and vegetation improve the livability of an urban context. The results demonstrate that the land-surface temperature, and therefore the air temperature, tend to decrease as the green areas increase. This trend depends on the type of urban context. Based on the results of a green-roofs investigation of Turin, the existing and potential green roofs are respectively almost 300 (257,380 m2) and 15,450 (6,787,929 m2). Based on potential assessment, a strategy of priority was established according to the characteristics of building, to the presence of empty spaces, and to the identification of critical areas, in which the thermal comfort conditions are poor with low vegetation. This approach can be useful to help stakeholders, urban planners, and policy makers to effectively mitigate the urban heat island (UHI), improve the livability of the city, reduce greenhouse gas (GHG) emissions and gain thermal comfort conditions, and to identify policies and incentives to promote green roofs.


2020 ◽  
pp. 240
Author(s):  
I Gusti Agung Ayu Rai Asmiwyati ◽  
Anak Agung Gede Sugianthara ◽  
I Nyoman Wardi

The variation of land surface temperature using Landsat 8, case study City of Denpasar. Land cover is an essential signature that is often used to understand interactions between local temperatures and land surfaces. The integration of remote sensing and geographical information system helps to effectively and efficiently extract data for a vast study area. The purpose of this study was to determine the range and distribution of Land Surface Temperature (LST) and the variation among land covers in City of Denpasar using Landsat 8. The City of Denpasar was selected as the representative study area where human population considerably increased high during past decade and thus, has posed a need to understand urban climates mainly for a city which located in a relatively small tropical island. This study shows that trees in mangrove, urban water areas, and paddy fields had lower LST and can be used as an effective means of offsetting the energy-intensive urban heat island effect.


Author(s):  
Rüdiger Grote

Two phenomena that can cause large numbers of premature human deaths have gained attention in the last years: heat waves and air pollution. These two effects have two things in common: They are closely related to climate change and they are particularly intense in urban areas. Urban areas are particular susceptible to these impacts because they can store lots of heat and have little opportunity for cooling off (also known as the urban heat island effect). In order to mitigate these impacts and to establish an environment that protects human health and improve well-being, implementation of green infrastructure – trees, green walls, and green roofs – is commonly proposed as a remedy. More trees, hedges and lawns are intuitively welcome by people living in cities for their beautifying effects, but to which degree can such greening actually counterbalance the expected effects of climate change? In this review I would like to investigate what science can offer to answer this question.


Sign in / Sign up

Export Citation Format

Share Document