Bioenergy potentials from recently abandoned cropland under the land-energy-water nexus

Author(s):  
Jan Sandstad Næss ◽  
Otavio Cavalett ◽  
Francesco Cherubini

<p>Bioenergy plays a key role in scenarios limiting global warming below 2°C in 2100 relative to pre-industrial times. Land availability for bioenergy production is constrained due to competition with agriculture, nature conservation and other land uses. Utilizing recently abandoned cropland to produce bioenergy is a promising option for gradual bioenergy deployment with lower risks of potential trade-offs on food security and the environment. Up until now, the global extent of abandoned cropland has been unclear. Furthermore, there is a need to better map bioenergy potentials, taking into account site-specific conditions such as local climate, soil characteristics, agricultural management and water use.</p><p>Our study spatially quantify global bioenergy potentials from recently abandoned cropland under the land-energy-water nexus. We integrate a recently developed high-resolution satellite-derived land cover product (European Space Agency Climate Change Initiative Land Cover) with an agro-ecological crop yield model (Global Agro-Ecological Zones 3.0). Abandoned cropland is mapped as pixels transitioning from cropland to non-urban classes. We further identify candidate areas for nature conservation and areas with increased pressure on water resources. Based on climatic conditions, soil characteristics and agricultural management levels, we spatially model bioenergy yields and irrigation water use on abandoned cropland for three perennial grasses. We compute and analyze bioenergy potentials for 296 different variants of management factors and land and water use constraints. By assessing key energy, water and land indicators, we identify optimal bioenergy production strategies and site-specific trade-offs.</p><p>We found 83 million hectares of abandoned cropland between 1992 and 2015, equivalent of 5% of today’s cropland area. Bioenergy potentials range between 6-39 exajoules per year (EJ yr<sup>-1</sup>) (11-68% of today’s bioenergy demand), depending on agricultural management, land availability and irrigation water use. We further show and extensively discuss site-specific trade-offs between increased bioenergy production, land-use and water-use. Our high-end estimate (39 EJ yr<sup>-1</sup>) relies on complete irrigation and land availability. When acknowledging site-specific trade-offs on water resources and nature conservation, a potential of 20 EJ yr<sup>-1</sup> is achievable without production in biodiversity hotspots or irrigation in water scarce areas. This is equal to 8-23% of median projected bioenergy demand in 2050 for 1.5°C scenarios across different Shared Socio-economic Pathways. The associated land and water requirements are equal to 3% of current global cropland extent and 8% of today’s global agricultural water use, respectively.</p>

2020 ◽  
Author(s):  
Fabian Stenzel ◽  
Dieter Gerten ◽  
Naota Hanasaki

Abstract. Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as fuel source, negative emission technology, or for final energy production. The associated freshwater requirements for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater requirements for such bioenergy production and puts these estimates into the context of scenarios for other water use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (partly including several scenarios) with reported values on global water demand for irrigation of biomass plantations, suggesting a range of 125–11,350 km3 yr−1 water use (consumption), compared to about 1,100–11,600 km3 yr−1 for other (agricultural, industrial, and domestic) water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and make the freshwater amounts involved comparable by estimating the original biomass harvests from reported final energy or negative emissions. We conclude that due to the potentially high water demands and the trade-offs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water demands, full disclosure of parameters and assumptions is crucial. A minimum set should include annual blue water consumption and withdrawal, bioenergy crop species, rainfed as well as irrigated bioenergy plantation locations (including total area), and total bioenergy harvest amounts.


2019 ◽  
Vol 12 (3-4) ◽  
pp. 1-12
Author(s):  
Diana Dogaru ◽  
Wolfram Mauser ◽  
Dan Balteanu ◽  
Tatjana Krimly ◽  
Christian Lippert ◽  
...  

Abstract In this paper we assess the irrigation water use in the Danube Basin, highlight its complexity, identify future challenges and show the relevance for a basin-wide integrative irrigation management plan as part of a more holistic and coherent resource policy. In this sense, we base our integrative regional assessments of the water-food-energy nexus on insights from an extensive review and scientific synthesis of the Danube Basin and region, experimental field studies on irrigation and agricultural water consumption, current irrigation related policies and strategies in most of the Danube countries, and regulatory frameworks on resources at European Union level. We show that a basin-wide integrative approach to water use calls for the evaluation of resource use trade-offs, resonates with the need for transdisciplinary research in addressing nexus challenges and supports integrative resource management policies within which irrigation water use represents an inherent part. In this respect, we propose a transdisciplinary research framework on sustainable irrigation water use in the Danube Basin. The findings were summarized into four interconnected problem areas in the Danube Basin, which directly or indirectly relate to irrigation strategies and resource policies: prospective water scarcity and Danube water connectedness, agricultural droughts, present and future level of potential yields, and science based proactive decision-making.


2021 ◽  
Vol 13 (5) ◽  
pp. 954
Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
Behnaz Molaei ◽  
R. Troy Peters ◽  
Claudio O. Stöckle ◽  
...  

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.


Sign in / Sign up

Export Citation Format

Share Document