A hysteretic model for rainfall-runoff of a simplifed catchment 

Author(s):  
Denis Flynn ◽  
Warren Roche

<div>The soil can be modelled as a porous medium in which the three phases of matter coexist and produce the emergent phenomenon of hysteresis.</div><div>Rate-independent hysteresis is a nonlinear phenomenon where the output depends not only on the current input but also the previous history of inputs to the system. In multiphase porous media such as soils, the hysteresis is in the relationship between the soil-moisture content, and the capillary pressure.</div><div>In this work, we develop a simplified hysteretic rainfall-runoff model consisting of the following subsystems that capture much of the physics of flow through a slab of soil:</div><div>1) A slab of soil where rainfall enters and if enough water is present in the soil, it will subsequently drain into the groundwater reservoir. This part of the model is represent by ODE with a Preisach operator.</div><div>2) A runoff component: If the rainfall exceeds the maximum infiltration rate of the soil, the excess will become surface runoff. This part of the model is represented by a series of two hysteretic reservoirs instead of the two linear reservoirs in the literature.</div><div>3) A ground water storage and outflow subsystem component: this is also modelled by a hysteretic reservoir. Finally, the outputs from the groundwater output and the overland flow are combined to give the total runoff. We will examine this model and compare it with non-hysteretic case both qualitatively and quantitively.</div>

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Men ◽  
Hao Lu ◽  
Wenjuan Jiang ◽  
Duo Xu

Aiming at the optimization layout of distributed low-impact development (LID) practices in the sponge city, a new mathematical method combining Stormwater Management Model (SWMM) and preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) was developed and was applied in the Ximen waterlogged area of Pingxiang City. Firstly, a block-scaled rainfall-runoff model was built in the study area by using SWMM. Then, an LIDs area optimization model was established by linking the SWMM and the PICEA-g based on the Matlab platform, which took the area ratios of various LIDs in each block as decision variables and took the total runoff, peak flow, suspended substance (SS) pollutant, and LIDs cost as objective functions. Thus, the problem of LIDs layout was turned into a mathematical optimization issue. So the cost-benefit optimal solutions with different emphases were found by using this algorithm, and the LIDs layout optimal scheme for this area was further analysed and verified by rainfall-runoff model. The results show that the total runoff reduction rates of the system reach a maximum of 21.8%, the peak flow reduction rates of the system are more than 10%, and the SS pollutant reduction rates are reduced by about 30% compared with before LIDs under the design storms of different return periods. The reduction rates of each runoff index are higher than the nondominated sorting genetic algorithm II (NSGA-II) method, and decision-makers can more effectively analyse the cost-benefit optimal solution from the Pareto solution sets. Therefore, the LIDs layout optimization method proposed in this paper has obvious advantages in solving similar many-objective optimization problems (MOOPs) in sponge city construction.


2019 ◽  
Vol 56 (4) ◽  
pp. 1065-1085
Author(s):  
Owen Dafydd Jones

AbstractWe introduce an idealised model for overland flow generated by rain falling on a hillslope. Our prime motivation is to show how the coalescence of runoff streams promotes the total generation of runoff. We show that, for our model, as the rate of rainfall increases in relation to the soil infiltration rate there is a distinct phase change. For low rainfall (the subcritical case) only the bottom of the hillslope contributes to the total overland runoff, while for high rainfall (the supercritical case) the whole slope contributes and the total runoff increases dramatically. We identify the critical point at which the phase change occurs, and show how it depends on the degree of coalescence. When there is no stream coalescence the critical point occurs when the rainfall rate equals the average infiltration rate, but when we allow coalescence the critical point occurs when the rainfall rate is less than the average infiltration rate, and increasing the amount of coalescence increases the total expected runoff.


GeoScape ◽  
2019 ◽  
Vol 13 (2) ◽  
pp. 132-140
Author(s):  
Tomáš Řehánek ◽  
Michal Podhorányi ◽  
Jan Křenek

Abstract One of the fundamental issues of hydrology is determination of total runoff volume from rainfall. The mutual relationship of these quantities can be experimentally determined by measuring rainfall and runoff. Rainfall-runoff models describe natural relations on the basis of variables determining physio-geographical conditions of a territorial unit as well as hydraulic properties of the respective river network. In the proposed paper, we focused on parameter recalculation of a rainfall-runoff model with focusing on runoff curve numbers (CN). The objective of this study was to update the data (CN) in the old modelling structures within the FLOREON+ (FLOods REcognition on the Net – Study Area) system and replace them with the new ones. The parameters of runoff CN were estimated according to available GIS layers primarily related to the existing soil conditions and land use. In the first phase, the calculation procedure was prepared for the smaller Porubka and Lubina basins, and then it was applied to the whole basin area. The results showed that the new runoff CN recalculation procedure resulted in reduction of the simulated runoff (peak discharge, volume) in the Odra River sub-basins, which also led to approximation to the real measured runoff in the Ostrava-Svinov profile. The derived method is applicable to other basins as well. Highlights for public administration, management and planning: • Runoff volumes resulting from rainfall significantly contribute to risk processes, such as soil erosion and floods. • The partially automated procedure for rainfall-runoff estimation is preseted, based on data for soil conditions and land cover. • Derivation is based on the original principles determined by the US Soil Conservation Service and can be applied to any river basin in the area of the Czech Republic. • In the future, the proposed methodology will be adapted to run within the ArcMap application.


2016 ◽  
Author(s):  
Haolu Shang ◽  
Massimo Menenti ◽  
Li Jia

Abstract. A discrete rainfall–runoff model has been developed, which uses retrievals of Water Saturated Soil (WSS) and inundation area from 37 GHz microwave observations. The model was implemented at three levels of increasing complexity using field-measured ground water table, WSS and inundated area, and precipitation data. The three levels, defined by the key-variables are: (1) precipitation and base flow; (2) overland flow, infiltrated flow and base flow; (3) overland flow, potential subsurface flow and base flow. The base flow is estimated from observed ground water table depth, while overland and infiltrated flows are estimated from precipitation and the WSS and inundated area. A linear scaling method is developed to estimate the potential subsurface flow. The three model implementations are calibrated with the gauge measurements of 10-day average river discharge in 2002 and 2005 respectively at Changsha station, downstream of Xiangjiang River basin, China. The discrete rainfall–runoff model assumes that specific runoff is determined by antecedent precipitations over a variable period of time. This duration is a model parameter varying between 10 and 150 days. The performance of the discrete rainfall–runoff model increased with the duration of antecedent precipitation for all three implementations in both years. With a duration of 150 days, the model reaches its best performance: Nash–Sutcliffe Efficiency, NSE, for the 1st implementation was ≥ 0.90 with relative RMSE ≤ 22 %; NSE ≈ 0.99 with relative RMSE ≤ 5 % for the 2nd implementation, and NSE ≥ 0.99 with relative RMSE ≤ 4 % for the 3rd one. These good performances prove that the retrievals of WSS and inundated area clearly improve model accuracy, thus justifying the choices of parameters and the method to estimate the potential subsurface flow. The set of parameters driving each implementation is an indication of dominant hydrological processes, particularly water storage, in determining the catchment response to rainfall. Significant differences in the annual water yield have been observed across the three implementations. The relative RMSE in each season demonstrates the possible recharge period of the ground water in Xiangjiang River basin.


1991 ◽  
Vol 22 (1) ◽  
pp. 1-14 ◽  
Author(s):  
L.G. Watts ◽  
A. Calver

A physically-based rainfall-runoff model is used to investigate effects of moving storms on the runoff hydrograph of throughflow dominated idealised catchments. Simulations are undertaken varying the storm speed, direction, intensity, the part of the catchment affected by rainfall, and the spatial definition of rainfall zones. For a 100 km2 catchment, under the circumstances investigated, an efficient spatial resolution of rainfall data is around 2.5 km along the path of the storm. Storms moving downstream produce earlier, higher peaks than do storms moving upstream. Error is most likely to be introduced into lumped-rainfall predictions for slower storm speeds, and the likely direction of this error can be specified. Differences in magnitude of peak response between downstream and upstream storm directions reach a maximum at a storm speed and direction similar to the average peak channel velocity. These results are qualitatively similar to those reported for overland flow dominated catchments, but differences in peak runoff between downstream and upstream storm directions are much smaller where rainfall inputs are modified by a period of hillslope throughflow.


2007 ◽  
Vol 177 (4S) ◽  
pp. 135-135
Author(s):  
Eiji Kikuchi ◽  
Akira Miyajima ◽  
Ken Nakagawa ◽  
Mototsugu Oya ◽  
Takashi Ohigashi ◽  
...  

VASA ◽  
2011 ◽  
Vol 40 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Gruber-Szydlo ◽  
Poreba ◽  
Belowska-Bien ◽  
Derkacz ◽  
Badowski ◽  
...  

Popliteal artery thrombosis may present as a complication of an osteochondroma located in the vicinity of the knee joint. This is a case report of a 26-year-old man with symptoms of the right lower extremity ischaemia without a previous history of vascular disease or trauma. Plain radiography, magnetic resonance angiography and Doppler ultrasonography documented the presence of an osteochondrous structure of the proximal tibial metaphysis, which displaced and compressed the popliteal artery, causing its occlusion due to intraluminal thrombosis..The patient was operated and histopathological examination confirmed the diagnosis of osteochondroma.


Sign in / Sign up

Export Citation Format

Share Document