Mathematical modeling of the process of magma formation in the Earth’s crust

Author(s):  
Ivan Utkin ◽  
Yury Podladchikov ◽  
Oleg Melnik

<p>One of the mechanisms of magma generation in the Earth's crust is the reaction of dehydration during subduction process. Water is released from subducting lithosphere which leads to the lowering of the melting temperature of mantle rock by hundreds of degrees.</p><p>In this work, we present a numerical study of the formation and rise of magma to the Earth's surface, considering partial melting and crystallization of rocks and chemical differentiation of magma. We develop a coupled model of the filtration flow of melt and magmatic fluid through deformable permeable rocks and a thermodynamic model of plagioclase melting based on Gibbs energy minimization approach. The formation of regions with a high melt concentration due to spontaneous focusing of filtration flow being the result of viscoplastic (de)compaction of the pore space is shown. The influence of mechanical properties of rocks and chemical composition of the system on the dynamics of the process is investigated.</p>

1996 ◽  
Vol 39 (3) ◽  
Author(s):  
F. Fanucci ◽  
A. Megna ◽  
S. Santini ◽  
F. Vetrano

In the framework of a cylindrical symmetry model for convective motions in the asthenosphere, a new profile for the viscosity coefficient depending on depth is suggested here. The numerical elaboration of the above mentioned model leads to interesting results which fit well with experimental observations. In particular these continuously varying viscosity solutions probably describe the convective motions within the Earth better than simple constant viscosity solutions. Consequently the temperature values seem to be a realistic representation of the possible thermal behaviour in the upper mantle.


2020 ◽  
Author(s):  
Charlotte Pascoe ◽  
David Hassell ◽  
Martina Stockhause ◽  
Mark Greenslade

<div>The Earth System Documentation (ES-DOC) project aims to nurture an ecosystem of tools & services in support of Earth System documentation creation, analysis and dissemination. Such an ecosystem enables the scientific community to better understand and utilise Earth system model data.</div><div>The ES-DOC infrastructure for the Coupled Model Intercomparison Project Phase 6 (CMIP6) modelling groups to describe their climate models and make the documentation available on-line has been available for 18 months, and more recently the automatic generation of documentation of every published simulation has meant that every CMIP6 dataset within the Earth System Grid Federation (ESGF) is now immediately connected to the ES-DOC description of the entire workflow that created it, via a “further info URL”.</div><div>The further info URL is a landing page from which all of the relevant CMIP6 documentation relevant to the data may be accessed, including experimental design, model formulation and ensemble description, as well as providing links to the data citation information.</div><div>These DOI landing pages are part of the Citation Service, provided by DKRZ. Data citation information is also available independently through the ESGF Search portal or in the DataCite search or Google’s dataset search. It provides users of CMIP6 data with the formal citation that should accompany any use of the datasets that comprise their analysis.</div><div>ES-DOC services and the Citation Service form a CMIP6 project  collaboration, and depend upon structured documentation provided by the scientific community. Structured scientific metadata has an important role in science communication, however it’s creation and collation exacts a cost in time, energy and attention.  We discuss progress towards a balance between the ease of information collection and the complexity of our information handling structures.</div><div> </div><div>CMIP6: https://pcmdi.llnl.gov/CMIP6/</div><div>ES-DOC: https://es-doc.org/</div><div>Further Info URL: https://es-doc.org/cmip6-ensembles-further-info-url</div><div> <p>Citation Service: http://cmip6cite.wdc-climate.de</p> </div>


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


2014 ◽  
Vol 982 ◽  
pp. 84-89
Author(s):  
Jindrich Fornůsek ◽  
Jan Zatloukal
Keyword(s):  

This paper presents a numerical study of earth covered composite arch subjected to internal blast load equaled to 6,25 tons of TNT. The concrete arch was protected against the blast by the 4 or 7 mm corrugated sheet. There was also one simulation where no sheet was applied. It was found that the presence of the corrugated sheet anchored to the arch can reduce 40 % of arch damage compared to the unprotected arch.


2018 ◽  
Vol 33 (6) ◽  
pp. 325-331
Author(s):  
Ilya A. Chernov ◽  
Nikolay G. Iakovlev

Abstract In the present paper we consider the first results of modelling the World Ocean biogeochemistry system within the framework of the Earth system model: a global atmosphere-ocean-ice-land-biogeochemistry model. It is based on the INMCM climate model (version INMCM39) coupled with the pelagic ecosystem model BFM. The horizontal resolution was relatively low: 2∘ × 2.5∘ for the ‘longitude’ and ‘latitude’ in transformed coordinates with the North Pole moved to land, 33 non-equidistant σ-horizons, 1 hour time step. We have taken into account 54 main rivers worldwide with run–off supplied by the atmosphere submodel. The setup includes nine plankton groups, 60 tracers in total. Some components sink with variable speed. We discuss challenges of coupling the BFM with the σ-coordinate ocean model. The presented results prove that the model output is realistic in comparison with the observed data, the numerical efficiency is high enough, and the coupled model may serve as a basis for further simulations of the long-term climate change.


Sign in / Sign up

Export Citation Format

Share Document