Predicting elastic deformations of the crust induced by environmental loading on time-scales from days to decades

Author(s):  
Robert Dill ◽  
Henryk Dobslaw ◽  
Anna Klos

<p>Earth’s surface is elastically deformed by time-variable surface mass loads such as variations in atmospheric surface pressure, ocean bottom pressure, and terrestrial water storage. We look at the individual environmental loading contributions from the three different subsystems (atmosphere, terrestrial water storage, ocean) as well as from sea-level variations induced by the global water mass balance between land and ocean. Dividing the contributions into a set of period bands by means of a Wavelet decomposition, we show that non-tidal atmospheric surface loading (NTAL) by far dominates non-tidal ocean (NTOL) and hydrospheric loading (HYDL) for periods as long as a few months. The contribution of terrestrial water storage is continuously growing for increasingly longer periods and dominates atmospheric pressure at periods of 300 days and above. Ocean dynamics including sea-level variations due to the seasonal global mass balance are only important in the immediate vicinity of the coast.</p><p>In representative regions, we compare different environmental loading estimates, e.g. ESMGFZ based on ECMWF operational atmospheric data, NTAL and NTOL based on ECMWF ERA5, HYDL based on GRACE/GRACE-FO. Depending on the geographical location and considered frequency range, different estimates for NTOL and HYDL can exhibit large differences. In contrast, all latest loading models show a very consistent picture of atmospheric surface pressure loading deformations.  To evaluate the ability of different GNSS solutions to confirm the vertical deformations predicted by the geophysical fluid models, we compared at selected sites vertical station coordinates from six GNSS solutions with loading model predictions. In many cases, GNSS-derived variations heavily dependent on subjective choices within the GNSS data processing.</p>

2021 ◽  
Author(s):  
Ann Scheliga ◽  
Manuela Girotto

<p>Sea level rise (SLR) projections rely on the accurate and precise closure of Earth’s water budget. The Gravity Recovery and Climate Experiment (GRACE) mission has provided global-coverage observations of terrestrial water storage (TWS) anomalies that improve accounting of ice and land hydrology changes and how these changes contribute to sea level rise. The contribution of land hydrology TWS changes to sea level rise is much smaller and less certain than contributions from glacial melt and thermal expansion. Although land hydrology TWS plays a smaller role, it is still important to investigate to improve the precision of the overall global water budget. This study analyzes how data assimilation techniques improve estimates of the land hydrology contribution to sea level rise. To achieve this, three global TWS datasets were analyzed: (1) GRACE TWS observations alone, (2) TWS estimates from the model-only simulation using Catchment Land Surface Model, and (3) TWS estimates from a data assimilation product of (1) and (2). We compared the data assimilation product with the GRACE observations alone and the model-only simulation to isolate the contribution to sea level rise from anthropogenic activities. We assumed a balanced water budget between land hydrology and the ocean, thus changes in global TWS are considered equal and opposite to sea level rise contribution.  Over the period of 2003-2016, we found sea level rise contributions from each dataset of +0.35 mm SLR eq/yr for GRACE, -0.34 mm SLR eq/yr for model-only, and a +0.09 mm SLR eq/yr for DA (reported as the mean linear trend). Our results indicate that the model-only simulation is not capturing important hydrologic processes. These are likely anthropogenic driven, indicating direct anthropogenic and climate-driven TWS changes play a substantial role in TWS contribution to SLR.</p>


Author(s):  
P. C. D. Chris Milly ◽  
Anny Cazenave ◽  
James S. Famiglietti ◽  
Vivien Gornitz ◽  
Katia Laval ◽  
...  

2012 ◽  
Vol 5 (6) ◽  
pp. 389-392 ◽  
Author(s):  
Yadu N. Pokhrel ◽  
Naota Hanasaki ◽  
Pat J-F. Yeh ◽  
Tomohito J. Yamada ◽  
Shinjiro Kanae ◽  
...  

2020 ◽  
Author(s):  
Shuang Yi ◽  
Nico Sneeuw

<p>Global terrestrial water storage (TWS) is an indicator of the integrated impact of climate variability on the environment. Accurate assessments of global TWS also facilitate the understanding of disturbances in global sea level rise. Gravity satellite GRACE has proved to be an effective tool in monitoring global TWS changes. With the latest observations of GRACE and GRACE Follow-on, we estimated the global TWS from April 2002 to October 2019, and found contrasting variations in global TWS before and after 2010. Before 2010, the global TWS was almost stable with variations that contribute only a few millimeters of sea level change; while the stability is ceased after the 2010/11 La Nina and three drastic fluctuations of up to 10 millimeters sea level contribution have occurred since then. We find these TWS changes have a good linear relationship with the global precipitation trend, rather than the accumulation of net precipitation, indicating that the precipitation trend is the main driving force of the recent global TWS instability. We further investigate the sensitivities of TWS to precipitation in basins.</p>


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Dostdar Hussain ◽  
Aftab Ahmed Khan ◽  
Syed Najam Ul Hassan ◽  
Syed Ali Asad Naqvi ◽  
Akhtar Jamil

AbstractMountains regions like Gilgit-Baltistan (GB) province of Pakistan are solely dependent on seasonal snow and glacier melt. In Indus basin which forms in GB, there is a need to manage water in a sustainable way for the livelihood and economic activities of the downstream population. It is important to monitor water resources that include glaciers, snow-covered area, lakes, etc., besides traditional hydrological (point-based measurements by using the gauging station) and remote sensing-based studies (traditional satellite-based observations provide terrestrial water storage (TWS) change within few centimeters from the earth’s surface); the TWS anomalies (TWSA) for the GB region are not investigated. In this study, the TWSA in GB region is considered for the period of 13 years (from January 2003 to December 2016). Gravity Recovery and Climate Experiment (GRACE) level 2 monthly data from three processing centers, namely Centre for Space Research (CSR), German Research Center for Geosciences (GFZ), and Jet Propulsion Laboratory (JPL), System Global Land Data Assimilation System (GLDAS)-driven Noah model, and in situ precipitation data from weather stations, were used for the study investigation. GRACE can help to forecast the possible trends of increasing or decreasing TWS with high accuracy as compared to the past studies, which do not use satellite gravity data. Our results indicate that TWS shows a decreasing trend estimated by GRACE (CSR, GFZ, and JPL) and GLDAS-Noah model, but the trend is not significant statistically. The annual amplitude of GLDAS-Noah is greater than GRACE signal. Mean monthly analysis of TWSA indicates that TWS reaches its maximum in April, while it reaches its minimum in October. Furthermore, Spearman’s rank correlation is determined between GRACE estimated TWS with precipitation, soil moisture (SM) and snow water equivalent (SWE). We also assess the factors, SM and SWE which are the most efficient parameters producing GRACE TWS signal in the study area. In future, our results with the support of more in situ data can be helpful for conservation of natural resources and to manage flood hazards, droughts, and water distribution for the mountain regions.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Justyna Śliwińska ◽  
Jolanta Nastula ◽  
Małgorzata Wińska

AbstractIn geodesy, a key application of data from the Gravity Recovery and Climate Experiment (GRACE), GRACE Follow-On (GRACE-FO), and Satellite Laser Ranging (SLR) is an interpretation of changes in polar motion excitation due to variations in the Earth’s surficial fluids, especially in the continental water, snow, and ice. Such impacts are usually examined by computing hydrological and cryospheric polar motion excitation (hydrological and cryospheric angular momentum, HAM/CAM). Three types of GRACE and GRACE-FO data can be used to determine HAM/CAM, namely degree-2 order-1 spherical harmonic coefficients of geopotential, gridded terrestrial water storage anomalies computed from spherical harmonic coefficients, and terrestrial water storage anomalies obtained from mascon solutions. This study compares HAM/CAM computed from these three kinds of gravimetric data. A comparison of GRACE-based excitation series with HAM/CAM obtained from SLR is also provided. A validation of different HAM/CAM estimates is conducted here using the so-called geodetic residual time series (GAO), which describes the hydrological and cryospheric signal in the observed polar motion excitation. Our analysis of GRACE mission data indicates that the use of mascon solutions provides higher consistency between HAM/CAM and GAO than the use of other datasets, especially in the seasonal spectral band. These conclusions are confirmed by the results obtained for data from first 2 years of GRACE-FO. Overall, after 2 years from the start of GRACE-FO, the high consistency between HAM/CAM and GAO that was achieved during the best GRACE period has not yet been repeated. However, it should be remembered that with the systematic appearance of subsequent GRACE-FO observations, this quality can be expected to increase. SLR data can be used for determination of HAM/CAM to fill the one-year-long data gap between the end of GRACE and the start of the GRACE-FO mission. In addition, SLR series could be particularly useful in determination of HAM/CAM in the non-seasonal spectral band. Despite its low seasonal amplitudes, SLR-based HAM/CAM provides high phase consistency with GAO for annual and semiannual oscillation.


Sign in / Sign up

Export Citation Format

Share Document