scholarly journals Landslide size matters: a new spatial predictive paradigm

Author(s):  
Luigi Lombardo ◽  
Hakan Tanyas ◽  
Raphaël Huser ◽  
Fausto Guzzetti ◽  
Daniela Castro Camilo

<p>The standard definition of landslide hazard requires the estimation of where, when (or how frequently) and how large a given landslide event may be. The geomorphological community involved in statistical models has addressed the component pertaining to how large a landslide event may be by introducing the concept of landslide-event magnitude scale. This scale, which depends on the planimetric area of the given population of landslides, in analogy to the earthquake magnitude, has been expressed with a single value per landslide event. As a result, the geographic or spatially-distributed estimation of how large a population of landslide may be when considered at the slope scale, has been disregarded in statistically-based landslide hazard studies. Conversely, the estimation of the landslide extent has been commonly part of physically-based applications, though their implementation is often limited to very small regions.</p><p> </p><p>In this work, we initially present a review of methods developed for landslide hazard assessment since its first conception decades ago. Subsequently, we introduce for the first time a statistically-based model able to estimate the planimetric area of landslides aggregated per slope units. More specifically, we implemented a Bayesian version of a Generalized Additive Model where the maximum landslide sizes per slope unit and the sum of all landslide sizes per slope unit are predicted via a Log-Gaussian model. These ''max'' and ''sum'' models capture the spatial distribution of landslide sizes. We tested these models on a global dataset expressing the distribution of co-seismic landslides due to 24 earthquakes across the globe. The two models we present are both evaluated on a suite of performance diagnostics that suggest our models suitably predict the aggregated landslide extent per slope unit. In addition to a complex procedure involving variable selection and a spatial uncertainty estimation, we built our model over slopes where landslides triggered in response to seismic shaking, and simulated the expected failing surface over slopes where the landslides did not occur in the past.  </p><p> </p><p>What we achieved is the first statistically-based model in the literature able to provide information about the extent of the failed surface across a given landscape. This information is vital in landslide hazard studies and should be combined with the estimation of landslide occurrence locations. This could ensure that governmental and territorial agencies have a complete probabilistic overview of how a population of landslides could behave in response to a specific trigger.</p><p>The predictive models we present are currently valid only for the 24 cases we tested. Statistically estimating landslide extents is still at its infancy stage. Many more applications should be successfully validated before considering such models in an operational way. For instance, the validity of our models should still be verified at the regional or catchment scale, as much as it needs to be tested for different landslide types and triggers. However, we envision that this new spatial predictive paradigm could be a breakthrough in the literature and, in time, could even become part of official landslide risk assessment protocols.</p>

2018 ◽  
Vol 45 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Katarzyna Łuszczyńska ◽  
Małgorzata Wistuba ◽  
Ireneusz Malik ◽  
Marek Krąpiec ◽  
Bartłomiej Szypuła

Abstract Most landslide hazard maps are developed on the basis of an area’s susceptibility to a landslide occurrence, but dendrochronological techniques allows one to develop maps based on past landslide activity. The aim of the study was to use dendrochronological techniques to develop a landslide hazard map for a large area, covering 3.75 km2. We collected cores from 131 trees growing on 46 sampling sites, measured tree-ring width, and dated growth eccentricity events (which occur when tree rings of different widths are formed on opposite sides of a trunk), recording the landslide events which had occurred over the previous several dozen years. Then, the number of landslide events per decade was calculated at every sampling site. We interpolated the values obtained, added layers with houses and roads, and developed a landslide hazard map. The map highlights areas which are potentially safe for existing buildings, roads and future development. The main advantage of a landslide hazard map developed on the basis of dendrochronological data is the possibility of acquiring long series of data on landslide activity over large areas at a relatively low cost. The main disadvantage is that the results obtained relate to the measurement of anatomical changes and the macroscopic characteristics of the ring structure occurring in the wood of tilted trees, and these factors merely provide indirect information about the time of the landslide event occurrence.


Author(s):  
W. Y. Li ◽  
C. Liu ◽  
J. Gao

Nowadays, Landslide has been one of the most frequent and seriously widespread natural hazards all over the world. How landslides can be monitored and predicted is an urgent research topic of the international landslide research community. Particularly, there is a lack of high quality and updated landslide risk maps and guidelines that can be employed to better mitigate and prevent landslide disasters in many emerging regions, including China. This paper considers national and regional scale, and introduces the framework on combining the empirical and physical models for landslide evaluation. Firstly, landslide susceptibility in national scale is mapped based on empirical model, and indicates the hot-spot areas. Secondly, the physically based model can indicate the process of slope instability in the hot-spot areas. The result proves that the framework is a systematic method on landslide hazard monitoring and early warning.


2018 ◽  
Vol 4 (3) ◽  
pp. 265
Author(s):  
Emil Wahyudianto

Road corridor of Kota Batu – Kediri Regency Boundary is a provincial road that has a vital function for the economic and tourism movement from and to Batu City in East Java Province. This inter-regency road is historically vulnerable to disaster events such as landslide, Kali Konto flash flood, Kelud Mountain lahar, flood inundation, etc. This research was referred to Regulation of Ministry of Public Work No.22/PRT/M/2007 on Guidelines for Spatial Planning of Landslide Vulnerable Areas and helped with Geographic Information System (GIS). Method comparison was also conducted by Meiliana (2011) with the indicators from the same regulation, and by using Landslide Hazard Assessment (LHA) method that is based on historical data. The landslide risk mapping with LHA method that is combined with analysis result from the vulnerability of moving vehicles is suggested to be the reference in mapping the mass-movement disaster risk on Indonesian road corridors. Analysis on frequency of rainfall that triggered landslide concluded that the probability of landslide occurrence (PLO) on daily rainfall was 126.2 mm, or 3 days-cumulative rainfall of 192.26 mm.


2022 ◽  
Author(s):  
S. Modugno ◽  
S. C. M. Johnson ◽  
P. Borrelli ◽  
E. Alam ◽  
N. Bezak ◽  
...  

AbstractDecision-making plays a key role in reducing landslide risk and preventing natural disasters. Land management, recovery of degraded lands, urban planning, and environmental protection in general are fundamental for mitigating landslide hazard and risk. Here, we present a GIS-based multi-scale approach to highlight where and when a country is affected by a high probability of landslide occurrence. In the first step, a landslide human exposure equation is developed considering the landslide susceptibility triggered by rain as hazard, and the population density as exposed factor. The output, from this overview analysis, is a global GIS layer expressing the number of potentially affected people by month, where the monthly rain is used to weight the landslide hazard. As following step, Logistic Regression (LR) analysis was implemented at a national and local level. The Receiver Operating Characteristic indicator is used to understand the goodness of a LR model. The LR models are defined by a dependent variable, presence–absence of landslide points, versus a set of independent environmental variables. The results demonstrate the relevance of a multi-scale approach, at national level the biophysical variables are able to detect landslide hotspot areas, while at sub-regional level geomorphological aspects, like land cover, topographic wetness, and local climatic condition have greater explanatory power.


2012 ◽  
Vol 12 (1) ◽  
pp. 53-60 ◽  
Author(s):  
J. V. DeGraff

Abstract. As geoscientists, we often perceive the production of a map or model to adequately define landslide hazard for an area as the answer or end point for reducing risk to people and property. In reality, the risk to people and property remains pretty much the same as it did before the map existed. Real landslide risk reduction takes place when the activities and populations at risk are changed so the consequences of a landslide event results in lower losses. Commonly, this takes place by translating the information embodied in the landslide hazard map into some change in policy and regulation applying to the affected area. This is where the dilemma arises. Scientific information generally has qualifications, gradations, and conditions associated with it. Regulations are necessarily written in language that tries to avoid any need for interpretation. Effectively incorporating geologic information into regulations and ordinances requires continued involvement with their development and implementation. Unless geoscientists are willing to participate in that process, sustainable risk reduction is unlikely to occur.


Author(s):  
W. Y. Li ◽  
C. Liu ◽  
J. Gao

Nowadays, Landslide has been one of the most frequent and seriously widespread natural hazards all over the world. How landslides can be monitored and predicted is an urgent research topic of the international landslide research community. Particularly, there is a lack of high quality and updated landslide risk maps and guidelines that can be employed to better mitigate and prevent landslide disasters in many emerging regions, including China. This paper considers national and regional scale, and introduces the framework on combining the empirical and physical models for landslide evaluation. Firstly, landslide susceptibility in national scale is mapped based on empirical model, and indicates the hot-spot areas. Secondly, the physically based model can indicate the process of slope instability in the hot-spot areas. The result proves that the framework is a systematic method on landslide hazard monitoring and early warning.


2019 ◽  
Vol 56 (9) ◽  
pp. 1291-1303 ◽  
Author(s):  
Brunella Balzano ◽  
Alessandro Tarantino ◽  
Marco Valerio Nicotera ◽  
Giovanni Forte ◽  
Melania de Falco ◽  
...  

The assessment of rainfall-induced shallow landslide hazards at the catchment scale poses a significant challenge. Traditional empirical approaches for landslide hazard assessment often assume that conditions having caused failure in the past will not change in the future. This assumption may not hold in a climate change scenario. Physically based models (PBMs) therefore represent the natural approach to include changing climate effects. PBMs would in principle require the combination of a three-dimensional (3-D) mechanical and water-flow model. However, a full 3-D finite element model at the catchment scale, with relatively small elements required to capture the pore-water pressure gradients, would have a significant computational cost. For this reason, simplifications to the mechanical (i.e., infinite slope) and water-flow models (i.e., one-dimensional or hybrid 3-D) are introduced, often based on a priori assumptions and not corroborated by experimental evidence. The paper presents a methodology to build a PBM in a bottom-up fashion based on geological surveys and geotechnical investigation. The PBM is initially set as simple as possible and then moved to a higher level of complexity if the model is not capable of simulating past landslide events. The approach is presented for the case study of Sorrento Peninsula and two main landslide events recorded during the winter of 1996–1997.


2009 ◽  
Vol 9 (3) ◽  
pp. 673-686 ◽  
Author(s):  
D. B. Kirschbaum ◽  
R. Adler ◽  
Y. Hong ◽  
A. Lerner-Lam

Abstract. Most landslide hazard assessment algorithms in common use are applied to small regions, where high-resolution, in situ, observables are available. A preliminary global landslide hazard algorithm has been developed to estimate areas of potential landslide occurrence in near real-time by combining a calculation of landslide susceptibility with satellite derived rainfall estimates to forecast areas with increased potential for landslide conditions. This paper presents a stochastic methodology to compare this new, landslide hazard algorithm for rainfall-triggered landslides with a newly available inventory of global landslide events, in order to determine the predictive skill and limitations of such a global estimation technique. Additionally, we test the sensitivity of the global algorithm to its input observables, including precipitation, topography, land cover and soil variables. Our analysis indicates that the current algorithm is limited by issues related to both the surface-based susceptibility map and the temporal resolution of rainfall information, but shows skill in determining general geographic and seasonal distributions of landslides. We find that the global susceptibility model has inadequate performance in certain locations, due to improper weighting of surface observables in the susceptibility map. This suggests that the relative contributions of topographic slope and soil conditions to landslide susceptibility must be considered regionally. The current, initial forecast system, although showing some overall skill, must be improved considerably if it is to be used for hazard warning or detailed studies. Surface and remote sensing observations at higher spatial resolution, together with improved landslide event catalogues, are required if global landslide hazard forecasts are to become an operational reality.


2011 ◽  
Vol 48 (1) ◽  
pp. 128-145 ◽  
Author(s):  
Chuan Tang ◽  
Jing Zhu ◽  
Xin Qi

The Wenchuan earthquake (magnitude Ms = 8.0) of 12 May 2008 triggered widespread and large-scale landslides over an area of about 50 000 km2. A study was undertaken to determine the primary factors associated with seismic landslide occurrence. An index-based approach used to assess earthquake-triggered landslide hazard in the central part of the Wenchuan earthquake area affected is described. Slope gradient, relief amplitude, lithology, bedding–slope relations, fault proximity, stream proximity, and antecedent rainfall are recognized as factors that may have had an important influence on landslide occurrence. The assessment of the influence of each of these factors is presented through use of a series of maps showing areas of low, moderate, high, and very high landslide hazard. Areas identified as having “very high and high landslide hazard” were located along the earthquake-source fault and along both banks of the Jian River. The role of rainfall is very significant for future landslide occurrence in the earthquake area. The results of this study will assist decision makers in the selection of safe sites during the reconstruction process. The maps can also be used for landslide risk management in the study area.


Author(s):  
Luigi Lombardo ◽  
Hakan Tanyas

AbstractGround motion scenarios exists for most of the seismically active areas around the globe. They essentially correspond to shaking level maps at given earthquake return times which are used as reference for the likely areas under threat from future ground displacements. Being landslides in seismically actively regions closely controlled by the ground motion, one would expect that landslide susceptibility maps should change as the ground motion patterns change in space and time. However, so far, statistically-based landslide susceptibility assessments have primarily been used as time-invariant.In other words, the vast majority of the statistical models does not include the temporal effect of the main trigger in future landslide scenarios. In this work, we present an approach aimed at filling this gap, bridging current practices in the seismological community to those in the geomorphological and statistical ones. More specifically, we select an earthquake-induced landslide inventory corresponding to the 1994 Northridge earthquake and build a Bayesian Generalized Additive Model of the binomial family, featuring common morphometric and thematic covariates as well as the Peak Ground Acceleration generated by the Northridge earthquake. Once each model component has been estimated, we have run 1000 simulations for each of the 217 possible ground motion scenarios for the study area. From each batch of 1000 simulations, we have estimated the mean and 95% Credible Interval to represent the mean susceptibility pattern under a specific earthquake scenario, together with its uncertainty level. Because each earthquake scenario has a specific return time, our simulations allow to incorporate the temporal dimension into any susceptibility model, therefore driving the results toward the definition of landslide hazard. Ultimately, we also share our results in vector format – a .mif file that can be easily converted into a common shapefile –. There, we report the mean (and uncertainty) susceptibility of each 1000 simulation batch for each of the 217 scenarios.


Sign in / Sign up

Export Citation Format

Share Document