scholarly journals From scenario-based seismic hazard to scenario-based landslide hazard: fast-forwarding to the future via statistical simulations

Author(s):  
Luigi Lombardo ◽  
Hakan Tanyas

AbstractGround motion scenarios exists for most of the seismically active areas around the globe. They essentially correspond to shaking level maps at given earthquake return times which are used as reference for the likely areas under threat from future ground displacements. Being landslides in seismically actively regions closely controlled by the ground motion, one would expect that landslide susceptibility maps should change as the ground motion patterns change in space and time. However, so far, statistically-based landslide susceptibility assessments have primarily been used as time-invariant.In other words, the vast majority of the statistical models does not include the temporal effect of the main trigger in future landslide scenarios. In this work, we present an approach aimed at filling this gap, bridging current practices in the seismological community to those in the geomorphological and statistical ones. More specifically, we select an earthquake-induced landslide inventory corresponding to the 1994 Northridge earthquake and build a Bayesian Generalized Additive Model of the binomial family, featuring common morphometric and thematic covariates as well as the Peak Ground Acceleration generated by the Northridge earthquake. Once each model component has been estimated, we have run 1000 simulations for each of the 217 possible ground motion scenarios for the study area. From each batch of 1000 simulations, we have estimated the mean and 95% Credible Interval to represent the mean susceptibility pattern under a specific earthquake scenario, together with its uncertainty level. Because each earthquake scenario has a specific return time, our simulations allow to incorporate the temporal dimension into any susceptibility model, therefore driving the results toward the definition of landslide hazard. Ultimately, we also share our results in vector format – a .mif file that can be easily converted into a common shapefile –. There, we report the mean (and uncertainty) susceptibility of each 1000 simulation batch for each of the 217 scenarios.

Author(s):  
Luguang Luo ◽  
Luigi Lombardo ◽  
Cees van Westen ◽  
Xiangjun Pei ◽  
Runqiu Huang

AbstractThe vast majority of statistically-based landslide susceptibility studies assumes the slope instability process to be time-invariant under the definition that “the past and present are keys to the future”. This assumption may generally be valid. However, the trigger, be it a rainfall or an earthquake event, clearly varies over time. And yet, the temporal component of the trigger is rarely included in landslide susceptibility studies and only confined to hazard assessment. In this work, we investigate a population of landslides triggered in response to the 2017 Jiuzhaigou earthquake ($$M_w = 6.5$$ M w = 6.5 ) including the associated ground motion in the analyses, these being carried out at the Slope Unit (SU) level. We do this by implementing a Bayesian version of a Generalized Additive Model and assuming that the slope instability across the SUs in the study area behaves according to a Bernoulli probability distribution. This procedure would generally produce a susceptibility map reflecting the spatial pattern of the specific trigger and therefore of limited use for land use planning. However, we implement this first analytical step to reliably estimate the ground motion effect, and its distribution, on unstable SUs. We then assume the effect of the ground motion to be time-invariant, enabling statistical simulations for any ground motion scenario that occurred in the area from 1933 to 2017. As a result, we obtain the full spectrum of potential coseismic susceptibility patterns over the last century and compress this information into a hazard model/map representative of all the possible ground motion patterns since 1933. This backward statistical simulations can also be further exploited in the opposite direction where, by accounting for scenario-based ground motion, one can also use it in a forward direction to estimate future unstable slopes.


1982 ◽  
Vol 72 (2) ◽  
pp. 637-642
Author(s):  
N. Mostaghel ◽  
G. Ahmadi

Abstract Lower and upper bounds of the peak horizontal ground acceleration are obtained through the consideration of the peak accelerations of two horizontal orthogonal components of the ground motion. Since the bounded region is relatively narrow, it is proposed to use the mean of the upper and lower bound accelerations as the peak horizontal ground acceleration. This mean value is equal to 1.20 times the larger peak acceleration of the two horizontal components of the ground motion. To support the proposed value, a simplified statistical analysis is also employed which results in a mean plus one standard deviation value for the peak horizontal ground acceleration of 1.24 times the larger peak acceleration. These conclusions are also supported by comparison with 50 pairs of earthquake acceleration records. For the resultant acceleration, the 50 pairs of records yield a mean plus one standard deviation estimate of the order of 1.20 times the larger peak acceleration.


2019 ◽  
Vol 109 (4) ◽  
pp. 1343-1357 ◽  
Author(s):  
Jorge Macedo ◽  
Norman Abrahamson ◽  
Jonathan D. Bray

Abstract Conditional ground‐motion models (CGMMs) for estimating Arias intensity (IA) for earthquakes in subduction zones are developed. The estimate of IA is conditioned in these models on the estimated peak ground acceleration (PGA), the spectral acceleration at T=1  s (SA1), time‐averaged shear‐wave velocity in the top 30 m (VS30), and magnitude (Mw). Random‐effects regressions are used to develop CGMMs for Japan, Taiwan, South America, and New Zealand. By combining the conditional models of IA with the ground‐motion models (GMMs) for PGA and SA1, the conditional models are converted to scenario‐based GMMs that can be used to estimate the median IA and its standard deviation directly for a given earthquake scenario and site conditions. The conditional scaling approach ensures the estimated IA values are consistent with a design spectrum that may correspond to above‐average spectral values for the controlling scenario. In addition, this approach captures the complex ground‐motion scaling effects found in GMMs for spectral acceleration, such as sediment‐depth effects, soil nonlinearity effects, and regionalization effects, in the developed scenario‐based models for IA. Estimates from the new scenario‐based IA models are compared to those from traditional GMMs for IA in subduction zones.


2014 ◽  
Vol 580-583 ◽  
pp. 1662-1666
Author(s):  
Chuan Fang Wang ◽  
Xia Xin Tao ◽  
Anastasia Z ◽  
Kai Zhao ◽  
Wei Jiang

The uncertainty of ground motion attenuation and its correction in PSHA is deal with in this paper. Mean values and standard deviations of random errors of three attenuation relationships of NGA-west1 are analyzed statistically from the data base released by the project. The dependences of the mean and deviation on magnitude, distance and peak ground acceleration are checked by the data base. The fact of mean values varying with acceleration is revealed obviously. Ground motion parameter Y is adopted into the probability density function of random error in a form of subsection. Finally, a suggestion to improve the correction is presented as subsection correction in the paper. The result of a case study by suggested procedure shows that the corrected acceleration is slightly higher than that of the traditional correction at the start of hazard curve, and is significantly lower than that of the traditional correction at the end of the curve, if the mean of random error decreases with acceleration.


2019 ◽  
Vol 276 ◽  
pp. 05012
Author(s):  
Yusep Muslih Purwana ◽  
Raden Harya D.H.I ◽  
Bambang Setiawan ◽  
Ni’am Aulawi

One of the largest structures in Malang is Sutami dam. It was built in 1964 to 1973 and began to be operated in 1977. Considering the age of the dam which is over 40 years and the high risk of earthquake in this area, it is necessary to analyze its seismic hazard using an updated data. The probablilistic seismic hazard analyses (PSHA) was employed to obtain peak ground acceleration (PGA). The deagregation was conducted to obtain the most influencing magnitudes (M) and and distance (R) values affecting the dam. The result indicates that the area of the dam has the PGA of 0.261 for 500 years return period, 0.41 for 2500 years return period and 0.586 for 10,000 years return period of eartquakes. The magnitude of 5.93-6.17 for the distance of 22-44 km are considered as the most influencing earthquake for the dam. Due to the lack of ground motion data for Sutami dam, the ground motion from other earthquake might be utilised such as Morgan Hill earthquake 1984, Whittier Narrow earthquake 1987, Chalfant Valley earthquake 1986, Georgia USSR earthquake 1991, Northridge earthquake 1994, or San Fernando earthquake 1971.


Nature ◽  
10.1038/37586 ◽  
1997 ◽  
Vol 390 (6660) ◽  
pp. 599-602 ◽  
Author(s):  
Edward H. Field ◽  
Paul A. Johnson ◽  
Igor A. Beresnev ◽  
Yuehua Zeng

2021 ◽  
pp. 875529302110194
Author(s):  
Daniel Verret ◽  
Denis LeBœuf ◽  
Éric Péloquin

Eastern North America (ENA) is part of a region with low-to-moderate seismicity; nonetheless, some significant seismic events have occurred in the last few decades. Recent events have reemphasized the need to review ENA seismicity and ground motion models, along with continually reevaluating and updating procedures related to the seismic safety assessment of hydroelectric infrastructures, particularly large dams in Québec. Furthermore, recent researchers have shown that site-specific characteristics, topography, and valley shapes may significantly aggravate the severity of ground motions. To the best of our knowledge, very few instrumental data from actual earthquakes have been published for examining the site effects of hydroelectric dam structures located in eastern Canada. This article presents an analysis of three small earthquakes that occurred in 1999 and 2002 at the Denis-Perron (SM-3) dam. This dam, the highest in Québec, is a rockfill embankment structure with a height of 171 m and a length of 378 m; it is located in a narrow valley. The ground motion datasets of these earthquakes include the bedrock and dam crest three-component accelerometer recordings. Ground motions are analyzed both in the time and frequency domains. The spectral ratios and transfer functions obtained from these small earthquakes provide new insights into the directionality of resonant frequencies, vibration modes, and site effects for the Denis-Perron dam. The crest amplifications observed for this dam are also compared with previously published data for large dams. New statistical relationships are proposed to establish dam crest amplification on the basis of the peak ground acceleration (PGA) at the foundation.


2021 ◽  
Vol 11 (9) ◽  
pp. 3768
Author(s):  
Fengqing Li ◽  
Isakbek Torgoev ◽  
Damir Zaredinov ◽  
Marina Li ◽  
Bekhzod Talipov ◽  
...  

Central Asia is one of the most challenged places, prone to suffering from various natural hazards, where seismically triggered landslides have caused severe secondary losses. Research on this problem is especially important in the cross-border Mailuu-Suu catchment in Kyrgyzstan, since it is burdened by radioactive legacy sites and frequently affected by earthquakes and landslides. To identify the landslide-prone areas and to quantify the volume of landslide (VOL), Scoops3D was selected to evaluate the slope stability throughout a digital landscape in the Mailuu-Suu catchment. By performing the limit equilibrium analysis, both of landslide susceptibility index (LSI) and VOL were estimated under five earthquake scenarios. The results show that the upstream areas were more seismically vulnerable than the downstream areas. The susceptibility level rose significantly with the increase in earthquake strength, whereas the VOL was significantly higher under the extreme earthquake scenario than under the other four scenarios. After splitting the environmental variables into sub-classes, the spatial variations of LSI and VOL became more clear: the LSI reduced with the increase in elevation, slope, annual precipitation, and distances to faults, roads, and streams, whereas the highest VOL was observed in the areas with moderate elevations, high precipitation, grasslands, and mosaic vegetation. The relative importance analysis indicated that the explanatory power reduced with the increase in earthquake level and it was significant higher for LSI than for VOL. Among nine environmental variables, the distance to faults, annual precipitation, slope, and elevation were identified as important triggers of landslides. By a simultaneous assessment of both LSI and VOL and the identification of important triggers, the proposed modelling approaches can support local decision-makers and householders to identify landslide-prone areas, further design proper landslide hazard and risk management plans and, consequently, contribute to the resolution of transboundary pollution conflicts.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


1981 ◽  
Vol 71 (1) ◽  
pp. 295-319
Author(s):  
A. McGarr ◽  
R. W. E. Green ◽  
S. M. Spottiswoode

abstract Ground acceleration was recorded at a depth of about 3 km in the East Rand Proprietary Mines, South Africa, for tremors with −1 ≦ ML ≦ 2.6 in the hypocentral distance range 50 m < R ≦ 1.6 km. The accelerograms typically had predominant frequencies of several hundred Hertz and peak accelerations, a, as high as 12 g. The peak accelerations show a dependence on magnitude, especially when expressed as dynamic shear-stress differences, defined as σ˜ = ρRa, where ρ is density. For the mine tremors, σ˜ varies from 2 to 500 bars and depends on magnitude according to log σ˜ = 1.40 + 0.38 · ML. Accelerograms for 12 events were digitized and then processed to determine velocity and, for seven events with especially good S/N, displacement and seismic source parameters. Peak ground velocities v ranged up to 6 cm/sec and show a well-defined dependence one earthquake size as measured by ML or by seismic moment, Mo. On the basis of regression fits to the mine data, with −0.76 ≦ ML ≦ 1.45, log Rv = 3.95 + 0.57 ML, where Rv is in cm2/sec, and log Rv = −4.68 + 0.49 log Mo. These regression lines agree excellently with the corresponding data for earthquakes of ML up to 6.4 or Mo to 1.4 × 1026 dyne-cm. At a given value of ML or Mo, a, at fixed R, shows considerably greater variation than v and appears to depend on the bandwidth of the recording system. The peak acceleration at small hypocentral distances is broadly consistent with ρRa = 1.14 Δτrofs/β, where Δτ is stress drop, ro is the source radius, β is shear velocity, and fs is the bandwidth of the recording system. The peak velocity data agree well with Rv = 0.57 βΔτro/μ, where μ is the modulus of rigidity; both expressions follow from Brune's model of the seismic source and were compared with data for events in the size range 5 × 1016 ≦ Mo ≦ 1.4 × 1026 dyne-cm. Measurements of the source parameters indicated that, as for earthquakes, the stress drops for the tremors range from 1 to 100 bars and show no consistent dependence on Mo down to Mo = 5 × 1016 dyne-cm.


Sign in / Sign up

Export Citation Format

Share Document