Components of apparent soil thermal conductivity measured by the heat pulse method

Author(s):  
Sen Lu

<p>Knowledge on the components of apparent soil thermal conductivity (λ) across various water contents (θ) and temperatures is important to accurately understand soil heat transfer mechanisms. In this study, soil thermal conductivity was measured for sandy loam and silty clay soils at various temperatures and air pressures using a transient method. Four components of λ, namely, heat conduction, latent heat transfer by water vapor diffusion, sensible heat transfer by liquid water, and sensible heat transfer by water vapor diffusion were quantified. Results showed that in uniform soils, the magnitudes of sensible heat transfers by liquid water and water vapor were negligible during these transient measurements. The contribution of latent heat transfer through vapor diffusion to total heat transfer increased as temperature increased, and the peak value occurred at an intermediate water content. The water content at which the maximum vapor diffusion occurred varied with soil texture. In addition to the four calculated components, a significant residual contribution to λ caused by an unidentified vapor transfer mechanism was observed between 3.5°C and 81°C. For example, calculations indicated that approximately 66% of the sandy loam λ at θ=0.11 m<sup>3</sup> m<sup>−3</sup> was caused by an unidentified vapor transfer mechanism at 81°C. This extra contribution by vapor transfer could be explained either as enhanced vapor diffusion or by an advection mechanism. Further investigation is needed to clarify whether enhanced diffusion or advection is occurring in unsaturated soils. </p>

Soil Science ◽  
2011 ◽  
Vol 176 (8) ◽  
pp. 387-398 ◽  
Author(s):  
Sanjit K. Deb ◽  
Manoj K. Shukla ◽  
Parmodh Sharma ◽  
John G. Mexal

Author(s):  
Anne D. W. Nuijten ◽  
Inge Hoff ◽  
Knut V. Høyland

Heated pavements are used as an alternative to removing snow and ice mechanically and chemically. Usually a heated pavement system is automatically switched on when snowfall starts or when there is a risk of ice formation. Ideally, these systems run based on accurate predictions of surface conditions a couple of hours ahead of time, for which both weather forecasts and reliable surface temperature predictions are needed. The effective thermal conductivity of the snow layer is often described as a function of its density. However the thermal conductivity of a snow layer can vary considerably, not only for snow samples with a different density, but also for snow samples with the same density, but with a variation in the liquid water content. In this paper a physical temperature and surface condition model is described for snow-covered roads. The model is validated for an entire winter season on a heated pavement in Norway. Two different models to describe the thermal conductivity through the snow layer were compared. Results show that the thermal conductivity of the snow layer can be best described as a function of the density for snow with a low liquid water content. For snow with a high water content, the thermal conductivity can be best described as a function of the volume fractions and thermal conductivity of ice, water, and air, in which air and ice are modeled as a series system and water and air/ice in parallel.


Author(s):  
Babafemi Olugunwa ◽  
Julia Race ◽  
Tahsin Tezdogan

Abstract Pipeline heat transfer modelling of buried pipelines is integral to the design and operation of onshore pipelines to aid the reduction of flow assurance challenges such as carbon dioxide (CO2) gas hydrate formation during pipeline transportation of dense phase CO2 in carbon capture and storage (CCS) applications. In CO2 pipelines for CCS, there are still challenges and gaps in knowledge in the pipeline transportation of supercritical CO2 due to its unique thermophysical properties as a single, dense phase liquid above its critical point. Although the design and operation of pipelines for bulk fluid transport is well established, the design stage is incomplete without the heat transfer calculations as part of the steady state hydraulic and flow assurance design stages. This paper investigates the steady state heat transfer in a buried onshore dense phase CO2 pipelines analytically using the conduction shape factor and thermal resistance method to evaluate for the heat loss from an uninsulated pipeline. A parametric study that critically analyses the effect of variation in pipeline burial depth and soil thermal conductivity on the heat transfer rate, soil thermal resistance and the overall heat transfer coefficient (OHTC) is investigated. This is done using a one-dimensional heat conduction model at constant temperature of the dense phase CO2 fluid. The results presented show that the influence of soil thermal conductivity and pipeline burial depth on the rate of heat transfer, soil thermal resistance and OHTC is dependent on the average constant ambient temperature in buried dense phase CO2 onshore pipelines. Modelling results show that there are significant effects of the ambient natural convection on the soil temperature distribution which creates a thermal influence region in the soil along the pipeline that cannot be ignored in the steady state modelling and as such should be modelled as a conjugate heat transfer problem during pipeline design.


2014 ◽  
Vol 53 (8) ◽  
pp. 1976-1995 ◽  
Author(s):  
Jeffrey D. Massey ◽  
W. James Steenburgh ◽  
Sebastian W. Hoch ◽  
Jason C. Knievel

AbstractWeather Research and Forecasting Model forecasts over the Great Salt Lake Desert erroneously underpredict nocturnal cooling over the sparsely vegetated silt loam soil area of Dugway Proving Ground in northern Utah, with a mean positive bias error in temperature at 2 m AGL of 3.4°C in the early morning [1200 UTC (0500 LST)]. Positive early-morning bias errors also exist in nearby sandy loam soil areas. These biases are related to the improper initialization of soil moisture and parameterization of soil thermal conductivity in silt loam and sandy loam soils. Forecasts of 2-m temperature can be improved by initializing with observed soil moisture and by replacing Johansen's 1975 parameterization of soil thermal conductivity in the Noah land surface model with that proposed by McCumber and Pielke in 1981 for silt loam and sandy loam soils. Case studies illustrate that this change can dramatically reduce nighttime warm biases in 2-m temperature over silt loam and sandy loam soils, with the greatest improvement during periods of low soil moisture. Predicted ground heat flux, soil thermal conductivity, near-surface radiative fluxes, and low-level thermal profiles also more closely match observations. Similar results are anticipated in other dryland regions with analogous soil types, sparse vegetation, and low soil moisture.


1993 ◽  
Vol 115 (4) ◽  
pp. 998-1003 ◽  
Author(s):  
P. F. Peterson ◽  
V. E. Schrock ◽  
T. Kageyama

In turbulent condensation with noncondensable gas, a thin noncondensable layer accumulates and generates a diffusional resistance to condensation and sensible heat transfer. By expressing the driving potential for mass transfer as a difference in saturation temperatures and using appropriate thermodynamic relationships, here an effective “condensation” thermal conductivity is derived. With this formulation, experimental results for vertical tubes and plates demonstrate that condensation obeys the heat and mass transfer analogy, when condensation and sensible heat transfer are considered simultaneously. The sum of the condensation and sensible heat transfer coefficients becomes infinite at small gas concentrations, and approaches the sensible heat transfer coefficient at large concentrations. The “condensation” thermal conductivity is easily applied to engineering analysis, and the theory further demonstrates that condensation on large vertical surfaces is independent of the surface height.


1959 ◽  
Vol 14 (2) ◽  
pp. 276-278 ◽  
Author(s):  
Konrad J. K. Buettner ◽  
Frederick F. Holmes

At room temperatures between 20° and 40°C, vapor transfer through skin of human forearm was tested with four small heated bottles containing air of humidities ranging from 2 to 100% relative humidity. Exposure times ranging from 30 to 120 minutes had no influence on results. Water loss or gain of skin were observed for the different bottles. At very high humidities, liquid water deposit on the skin was measured by weighing a blotter. Skin vapor loss decreases systematically when bottle moisture increases. This increase is enhanced at room temperatures above 24℃, where total loss into a dry bottle increases more than fivefold. This increase seems only partially caused by sweat and partially by a decrease of the skin diffusion resistance. Tourniquet and locally applied atropine did not affect vapor transfer in a cool room. In a hot room, the tourniquet lowered the vapor loss by only 20%, whereas atropine drastically curtailed vapor loss. Submitted on August 25, 1958


2020 ◽  
Author(s):  
Tangtang Zhang ◽  
Xin Ma

<p>Soil temperature, soil water content and soil thermal properties were measured in an artificial forestland and a natural regrowth grassland from November in 2017 to July in 2019. The results show that the effects of soil temperature and soil water content on thermal properties are different in different soil condition. Soil thermal conductivity (K) and soil volumetric heat capacity (C) increase with increasing temperature in unfrozen period, but soil diffusivity (D) has no significant dynamic cycle and it almost keeps a constant level in a certain time. Soil thermal conductivity (K) decreases with increasing temperature during soil frozen period. The C and K increase with increasing soil water content in unfrozen period, while the D decrease with increasing soil water content.</p>


Sign in / Sign up

Export Citation Format

Share Document