Degradation or recovery of argan woodlands in South Morocco? Tree count from satellite imagery between 1967–2019 may underestimate pressures on dryland forests status

Author(s):  
Irene Marzolff ◽  
Mario Kirchhoff ◽  
Robin Stephan ◽  
Manuel Seeger ◽  
Ali Aït Hssaïne ◽  
...  

<p>In semi-arid to arid South-west Morocco, the once ubiquitous endemic argan tree (<em>Argania spinosa</em>) forms the basis of a traditional silvo-pastoral agroforestry system with complex usage rights involving pasturing and tree-browsing by goats, sheep and camels, smallholder agriculture and oil production. Widespread clearing of the open-canopy argan forests has been undertaken in the 12<sup>th</sup>–17<sup>th</sup> century for sugarcane production, and again in the 20<sup>th</sup> century for fuelwood extraction and conversion to commercial agriculture. The remaining argan woodlands have continued to decline due to firewood extraction, charcoal-making, overgrazing and overbrowsing. Soil and vegetation are increasingly being degraded; natural rejuvenation is hindered, and soil-erosion rates rise due to reduced infiltration and increased runoff. Numerous studies indicate that tree density and canopy cover have been generally decreasing for the last 200 years. However, there is little quantitative and spatially explicit information about these forest-cover dynamics.</p><p>In our study, the tree-cover change between 1967 and 2019 was analysed for 30 test sites of 1 ha each in argan woodlands of different degradation stages in the provinces of Taroudant, Agadir Ida-Outanane and Chtouka-Aït Baha. We used historical black-and-white satellite photography from the American reconnaissance programme CORONA, recent high-resolution multispectral imagery from the commercial WorldView satellites and ultrahigh resolution small-format aerial photography taken with an unmanned aerial system (UAS) to map the presence, absence and comparative crown-size class of 2610 trees in 1967 and 2019. We supplemented the remotely-sensed data with field observations on tree structure and architecture.</p><p>Results show that plant densities reach up to 300 argan trees and shrubs per hectare, and the mean tree density has increased from 58 trees/ha in 1967 to 86 trees/ha in 2019. While 7% of the 1967 trees have vanished today, more than one third of today’s trees could not be observed in 1967. This positive change has a high uncertainty, however, as most of the increase concerns small trees (< 3 m diameter) which might have been missed on the lower-resolution CORONA images.</p><p>When combined with our field data on tree architecture, tree count – albeit a parameter easily attained by remote sensing – is revealed as too simple an indicator for argan-forest dynamics, and the first impression of a positive development needs to be revised: The new small trees as well as trees with decreased crown sizes clearly show much stronger degradation characteristics than others, indicating increased pressures on the argan ecosystem during recent decades. Structural traits of the smaller trees also suggest that the apparent increase of tree count is not a result of natural rejuvenation, but mostly of stump re-sprouting, often into multi-stemmed trees, after felling of a tree. The density of the argan forest in the 1960s, prior to the general availability of cooking gas in the region and before the stronger enforcement of the argan logging ban following the declaration of the UNESCO biosphere reserve, may have marked a historic low in our study area, making the baseline of our change analysis far removed from the potential natural state of the argan ecosystem.</p>

2020 ◽  
Vol 14 (4) ◽  
pp. 1294-1307
Author(s):  
Fatimata Niang-Diop ◽  
Steen N. Christensen ◽  
Anders S. Barfod ◽  
Bienvenu Sambou ◽  
Mamadou Diop ◽  
...  

Trees are rapidly disappearing from agrarian landscapes in many tropical countries, a severe problem to rural populations, who depend on wood and non-timber forest products (NTFP) for their livelihoods. The aim of this study was to determine tree density, diversity, biomass and carbon stock in farmlands in Senegal and to gain insight in the socio-economic determinants of the tree cover. An allometric model was developed to estimate the average above ground biomass (AGB) based on field investigations of 235.5 ha of agricultural fields. In total, 25 tree species were recorded with an average density of 1.6 tree ha-1 and a canopy cover of 1%. The AGB was 8.9 t. ha-1 corresponding to 4.45 t C ha-1. A single species, Cordyla pinnata, accounted for 50% of all the trees censured. Investigations of google Earth images showed considerable change in tree density during the investigated periods (2004, 2009 and 2013). The tree density decreased at the rate of 3% per year-1 from 2004-2009 and 6.4% per year-1 from 2009-2013. Based on these results, all the trees would be lost in 30 years from 2009 and in 16 years from 2013 if this trend continues. Informants were generally interested in increasing the number of fruit trees. On average, they were willing to allocate 19% of their land for planting of new trees. Tree planting, however, has not been traditionally considered an option by the landowners, since livestock damage on young trees was too big and fencing not an option, but the recent years tree planting with certification for carbon sale has been initiated with support from outside.Keywords: Africa, forest resources, deforestation, local management, woody biomass.  


Author(s):  
L. Hojas-Gascon ◽  
A. Belward ◽  
H. Eva ◽  
G. Ceccherini ◽  
O. Hagolle ◽  
...  

The forthcoming European Space Agency’s Sentinel-2 mission promises to provide high (10 m) resolution optical data at higher temporal frequencies (5 day revisit with two operational satellites) than previously available. CNES, the French national space agency, launched a program in 2013, ‘SPOT4 take 5’, to simulate such a dataflow using the SPOT HRV sensor, which has similar spectral characteristics to the Sentinel sensor, but lower (20m) spatial resolution. Such data flow enables the analysis of the satellite images using temporal analysis, an approach previously restricted to lower spatial resolution sensors. We acquired 23 such images over Tanzania for the period from February to June 2013. The data were analysed with aim of discriminating between different forest cover percentages for landscape units of 0.5 ha over a site characterised by deciduous intact and degraded forests. The SPOT data were processed by one extracting temporal vegetation indices. We assessed the impact of the high acquisition rate with respect to the current rate of one image every 16 days. Validation data, giving the percentage of forest canopy cover in each land unit were provided by very high resolution satellite data. Results show that using the full temporal series it is possible to discriminate between forest units with differences of more than 40% tree cover or more. Classification errors fell exclusively into the adjacent forest canopy cover class of 20% or less. The analyses show that forestation mapping and degradation monitoring will be substantially improved with the Sentinel-2 program.


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


2021 ◽  
Vol 13 (5) ◽  
pp. 2640
Author(s):  
Muhammad Zubair ◽  
Akash Jamil ◽  
Syed Bilal Hussain ◽  
Ahsan Ul Haq ◽  
Ahmad Hussain ◽  
...  

The moist temperate forests in Northern Pakistan are home to a variety of flora and fauna that are pivotal in sustaining the livelihoods of the local communities. In these forests, distribution and richness of vegetation, especially that of medicinal plants, is rarely reported. In this study, we carried out a vegetation survey in District Balakot, located in Northeastern Pakistan, to characterize the diversity of medicinal plants under different canopies of coniferous forest. The experimental site was divided into three major categories (viz., closed canopy, open spaces, and partial tree cover). A sampling plot of 100 m2 was established on each site to measure species diversity, dominance, and evenness. To observe richness and abundance, the rarefaction and rank abundance curves were plotted. Results revealed that a total of 45 species representing 34 families were available in the study site. Medicinal plants were the most abundant (45%) followed by edible plants (26%). Tree canopy cover affected the overall growth of medicinal plants on the basis of abundance and richness. The site with partial canopy exhibited the highest diversity, dominance, and abundance compared to open spaces and closed canopy. These findings are instrumental in identifying the wealth of the medicinal floral diversity in the northeastern temperate forest of Balakot and the opportunity to sustain the livelihoods of local communities with the help of public/private partnership.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Jesús Julio Camarero ◽  
Michele Colangelo ◽  
Antonio Gazol ◽  
Manuel Pizarro ◽  
Cristina Valeriano ◽  
...  

Windstorms are forest disturbances which generate canopy gaps. However, their effects on Mediterranean forests are understudied. To fill that research gap, changes in tree, cover, growth and soil features in Pinus halepensis and Pinus sylvestris plantations affected by windthrows were quantified. In each plantation, trees and soils in closed-canopy stands and gaps created by the windthrow were sampled. Changes in tree cover and radial growth were assessed by using the Normalized Difference Vegetation Index (NDVI) and dendrochronology, respectively. Soil features including texture, nutrients concentration and soil microbial community structure were also analyzed. Windthrows reduced tree cover and enhanced growth, particularly in the P. halepensis site, which was probably more severely impacted. Soil characteristics were also more altered by the windthrow in this site: the clay percentage increased in gaps, whereas K and Mg concentrations decreased. The biomass of Gram positive bacteria and actinomycetes increased in gaps, but the biomass of Gram negative bacteria and fungi decreased. Soil gaps became less fertile and dominated by bacteria after the windthrow in the P. halepensis site. We emphasize the relevance of considering post-disturbance time recovery and disturbance intensity to assess forest resilience within a multi-scale approach.


2021 ◽  
pp. 1-10
Author(s):  
Carlos M. Delgado-Martínez ◽  
Fredy Alvarado ◽  
Melanie Kolb ◽  
Eduardo Mendoza

Abstract Great attention has been drawn to the impacts of habitat deforestation and fragmentation on wildlife species richness. In contrast, much less attention has been paid to assessing the impacts of chronic anthropogenic disturbance on wildlife species composition and behaviour. We focused on natural small rock pools (sartenejas), which concentrate vertebrate activity due to habitat’s water limitation, to assess the impact of chronic anthropogenic disturbance on the species richness, diversity, composition, and behaviour of medium and large-sized birds and mammals in the highly biodiverse forests of Calakmul, southern Mexico. Camera trapping records of fauna using sartenejas within and outside the Calakmul Biosphere Reserve (CBR) showed that there were no effects on species richness, but contrasts emerged when comparing species diversity, composition, and behaviour. These effects differed between birds and mammals and between species: (1) bird diversity was greater outside the CBR, but mammal diversity was greater within and (2) the daily activity patterns of birds differed slightly within and outside the CBR but strongly contrasted in mammals. Our study highlights that even in areas supporting extensive forest cover, small-scale chronic anthropogenic disturbances can have pervasive negative effects on wildlife and that these effects contrast between animal groups.


2019 ◽  
Author(s):  
Luisa Feliciano-Cruz ◽  
Sarah Becker ◽  
Kristofer Lasko ◽  
Craig Daughtry ◽  
Andrew Russ

2013 ◽  
Author(s):  
Guopeng Ren ◽  
Stephen S. Young ◽  
Lin Wang ◽  
Wei Wang ◽  
Yongcheng Long ◽  
...  

There is profound interest in knowing the degree to which China’s institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China’s two most important forest protection policies are its National Forest Protection Program (NFPP) and its National-level Nature Reserves (NNRs). The NFPP was implemented in 17 provinces starting in the year 2000 in response to deforestation-caused flooding. We used MODIS data (MOD13Q1) to estimate forest cover and forest loss across mainland China, and we report that 1.765 million km2or 18.7% of mainland China was covered in forest (12.3%, canopy cover > 70%) and woodland (6.4%, 40% ≤ canopy cover < 70%) in 2000. By 2010, a total of 480,203 km2of forest+woodland was lost, amounting to an annual deforestation rate of 2.7%. The forest-only loss was 127,473 km2, or 1.05% annually. The three most rapidly deforested provinces were outside NFPP jurisdiction, in the southeast. Within the NFPP provinces, the annual forest+woodland loss rate was 2.26%, and the forest-only rate was 0.62%. Because these loss rates are likely overestimates, China appears to have achieved, and even exceeded, its NFPP target of reducing deforestation to 1.1% annually in the target provinces. We also assemble the first-ever polygon dataset for China’s forested NNRs (n=237), which covered 74,030 km2in 2000. Conventional unmatched and covariate-matching analyses both find that about two-thirds of China’s NNRs exhibit effectiveness in protecting forest cover and that within-NNR deforestation rates are higher in provinces that have higher overall deforestation.


2019 ◽  
Vol 29 (3) ◽  
pp. 1324
Author(s):  
Rafael Borges ◽  
Mari Inês Carissimi Boff ◽  
Maria Carolina Blassioni-Moraes ◽  
Camila Biscaro-Borges ◽  
Adelar Mantovani

Sign in / Sign up

Export Citation Format

Share Document