Variability and changes of drought-relevant circulation types in southern central Europe

Author(s):  
Selina Thanheiser

<p>The estimation of regional extreme events (heavy precipitation and droughts) in Central Europe under ongoing climate change especially includes an evaluation of the relationship between atmospheric circulation types and regional droughts taking place in the bilateral research project WETRAX+ (WEather Patterns, Cyclone TRAcks, and related precipitation EXtremes). The study area is located in the south of central Europe, including Austria, parts of Germany, Switzerland, and the Czech Republic.</p><p>For a precipitation-conditioned circulation type classification, atmospheric variable fields from gridded daily JRA55 reanalysis data (Japan Meteorological Agency 2018) and gridded daily precipitation data based on 1756 weather stations in the study area (Zentralanstalt für Meteorologie und Geodynamik 2018) were used for the observation period 1961 to 2017. Seven different regional climate model runs of the Euro-Cordex – Initiative and from ReKliEs-De (Regional Climate Projections Ensemble for Germany) as well as three runs of the global climate model ECHAM6 (greenhouse gas scenario RCP 8.5) were used to estimate future changes in two projection periods (2031-2060 and 2071-2100).</p><p>The large-scale atmospheric circulation types have been derived using a non-hierarchical cluster analysis provided in the COST733 Classification Software. The drought-relevant circulation types are determined according to relative frequencies of circulation type days under a particular percentile of precipitation: If at least 20 percent of the circulation type days are below the 20th percentile of precipitation, the circulation type is defined as drought relevant. Drought-relevant circulation types are examined in terms of trends, persistence, changes in monthly occurrence frequencies, and within-type variability. When transferring the circulation types to the climate model data, each single day of the projection period is assigned to the circulation type to whose centroid fields the respective single fields have the smallest Euclidean distance.</p><p>During the observation period, the trend analyses show that the occurrence of drought-relevant circulation types is significantly more often associated with higher temperatures and lower relative humidity. First results of the analysis for the future climate show an increase of central high-pressure areas over Central and Eastern Europe for the months April to September. Anticyclonic weather conditions with a resulting southwesterly flow occur less frequently.</p>

2021 ◽  
Author(s):  
Tugba Ozturk ◽  
Dominic Matte ◽  
Jens Hesselbjerg Christensen

AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.


2018 ◽  
Vol 31 (8) ◽  
pp. 3009-3031 ◽  
Author(s):  
Marco Rohrer ◽  
Stefan Brönnimann ◽  
Olivia Martius ◽  
Christoph C. Raible ◽  
Martin Wild ◽  
...  

Abstract Atmospheric circulation types, blockings, and cyclones are central features of the extratropical flow and key to understanding the climate system. This study intercompares the representation of these features in 10 reanalyses and in an ensemble of 30 climate model simulations between 1980 and 2005. Both modern, full-input reanalyses and century-long, surface-input reanalyses are examined. Modern full-input reanalyses agree well on key statistics of blockings, cyclones, and circulation types. However, the intensity and depth of cyclones vary among them. Reanalyses with higher horizontal resolution show higher cyclone center densities and more intense cyclones. For blockings, no strict relationship is found between frequency or intensity and horizontal resolution. Full-input reanalyses contain more intense blocking, compared to surface-input reanalyses. Circulation-type classifications over central Europe show that both versions of the Twentieth Century Reanalysis dataset contain more easterlies and fewer westerlies than any other reanalysis, owing to their high pressure bias over northeast Europe. The temporal correlation of annual circulation types over central Europe and blocking frequencies over the North Atlantic–European domain between reanalyses is high (around 0.8). The ensemble simulations capture the main characteristics of midlatitudinal atmospheric circulation. Circulation types of westerlies to northerlies over central Europe are overrepresented. There are too few blockings in the higher latitudes and an excess of cyclones in the midlatitudes. Other characteristics, such as blocking amplitude and cyclone intensity, are realistically represented, making the ensemble simulations a rich dataset to assess changes in climate variability.


2012 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Joanna Jędruszkiewicz ◽  
Piotr Piotrowski

Abstract Thermal conditions are largely determined by atmospheric circulation. Therefore, projection of future temperature changes should be considered in relation to changes in circulation patterns. This paper assess to what extent changes in circulation correspond to spatial variability of the winter temperature increase in Poland in 2021-2050 period based on the RACMO2 model. The daily data of the mean temperature and sea level pressure (SLP) from selected regional climate model and observations were used. SLP data were used to determine the advection types and circulation character. Firstly, changes in frequency of circulation types between 2021-2050 and 1971-2000 periods were examined. Then changes in air temperature for specific circulation type in relation to reference period were studied. Finally, the influence of atmospheric circulation on spatial temperature variation was discussed. Considerably high increase in cyclonic situation of more than 18%, especially from the west and south-west direction, and decrease in anticyclonic situation mainly from the west and northwest in winter was noticed. Changes in frequency of circulation types result in temperature growth. For some types it is predicted that warming can reach even 3-4°C. The cyclonic (Ec, SEc, Sc) and anticylonic (SEa, Sa, Ea) types are likely to foster the highest warming in the scenario period.


2021 ◽  
Author(s):  
Julie Røste ◽  
Oskar A Landgren

Abstract Atmospheric circulation type classification methods were applied to an ensemble of 57 regional climate model simulations from Euro-CORDEX, their 11 boundary models from CMIP5 and the ERA5 reanalysis. We compared frequencies of the different circulation types in the simulations with ERA5 and found that the regional models add value especially in the summer season. We applied three different classification methods (the subjective Grosswettertypes and the two optimisation algorithms SANDRA and distributed k-means clustering) from the cost733class software and found that the results are not particularly sensitive to choice of circulation classification method. There are large differences between models. Simulations based on MIROC-MIROC5 and CNRM-CERFACS-CNRM-CM5 show an over-representation of easterly flow and an under-representation of westerly. The downscaled results retain the large-scale circulation from the global model most days, but especially the regional model IPSL-WRF381P changes the circulation more often, which increases the error relative to ERA5. Simulations based on ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR show consistently smaller errors relative to ERA5 in all seasons. The ensemble spread is largest in the summer and smallest in the winter. Under the future RCP8.5 scenario, more than half of the ensemble shows an increase in frequency of north-easterly flow and decrease in the Central-Eastern European high and south-easterly flow. There is in general a strong agreement in the sign of the change between the regional simulations and the data from the corresponding global model.


2020 ◽  
Author(s):  
Selina Thanheiser ◽  
Markus Homann ◽  
Andreas Philipp ◽  
Christoph Beck ◽  
Jucundus Jacobeit

<p>The German weather service reports a new record mean June temperature for Germany and intensive heat waves during 2018 and 2019. Between January 2018 and June 2019, three new monthly top extremes were recorded (April 2018, May 2018 and June 2019).</p><p>In this study the relationships between the persistence and frequency of atmospheric circulation patterns related to drought and surface air temperature anomalies are investigated. The study area is in southern Central Europe, including parts of Germany and Switzerland as well as Austria and Czech Republic.</p><p>Large-scale atmospheric circulation types (relevant to drought) have been derived by using the COST733 classification software. Atmospheric variables from gridded daily JRA55 reanalysis data (Japanese Meteorological Agency 2018) and gridded precipitation data for the study area (6x6km, based on timeseries of 1756 weather stations from Zentralanstalt für Meteorologie und Geodynamik 2018) were used for the classification. All input variables were specifically weighted in the classification process. Daily maximum temperature data from ECA&D (2019) for different stations within the study area are used to evaluate the relationship between a circulation type and heat (cold) waves.</p><p>The drought-relevant circulation types are determined according to relative frequencies of circulation type days under a particular percentile of precipitation: If at least 20 percent of the circulation type days are below the 20th percentile of precipitation, the circulation type is defined as drought relevant.</p><p>For the derived drought-relevant circulation types, the mean seasonal frequencies [in %] (April-September, October-March) and the mean persistence [in days] (1961-2017) are calculated. To evaluate the relationship between a circulation type and heat (cold) waves, an efficiency coefficient is calculated. The efficiency coefficient is defined as ratio between the frequency of the circulation type in heat (cold) waves and its mean seasonal frequency.</p><p>For the study area, those circulation types relevant to drought with a high proportion of seasonal temperature anomalies could be identified. The circulation type with a dominant Azores high with ridges of high-pressure towards Central/Eastern Europe has the highest proportion of positive temperature anomalies in summer.</p>


2020 ◽  
Vol 4 (1) ◽  
pp. 27
Author(s):  
Huan Zhang ◽  
Merja H. Tölle

High horizontal resolution regional climate model simulations serve as forcing data for crop and dynamic vegetation models, for generating possible scenarios of the future effects of climate change on crop yields and pollinators. Here, we performed convection-permitting hindcast simulations with the regional climate model COSMO5.0-CLM15 (CCLM) from 1979 to 2015, and the first year was considered as a spin-up period. The model was driven with hourly ERA5 data, which were the latest climate reanalysis product by ECMWF, and directly downscaled to a 3 km horizontal resolution over Central Europe. The land-use classes were described by ECOCLIMAP, and the soil type and depth were described by HWSD. The evaluation was carried out in terms of temperature, precipitation, and climate indices, comparing CCLM output with the gridded observational dataset HYRAS from the German Weather Service. While CCLM inherits a warm and dry summer bias found in its parent model, it reproduces the main features of the recent past climate of Central Europe, including the seasonal mean climate patterns and probability density distributions. Furthermore, the model reproduced climate indices for temperature like growing season length, growing season start date, number of summer days. The results highlighted the possibility of directly downscaling ERA5 data with regional climate models, avoiding the multiple nesting approach and high computational costs. This study adds confidence to convection-permitting climate projections of future changes in agricultural climate indices.


2019 ◽  
Vol 23 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Kinga Kulesza

Abstract There are many classifications of atmospheric circulation types. In Poland, the most important one, used by Polish weather services, is the classification of circulation types developed by Lityński. This paper proposes four modifications to the currently used algorithm for determining atmospheric circulation types. The proposed algorithms have been compared and it has been shown which one produces a catalogue of circulation types in which the division of the distribution of the values of the three indices (the zonal index Ws, meridional index Wp and cyclonicity index Cp) into three classes is the closest to being equally likely. In 1986-2015, the classification scheme that deemed to be the best, differed in above 19% of cases from the currently used classification.


2021 ◽  
Author(s):  
Romana Beranova ◽  
Jan Kysely

<p>Heavy large-scale precipitation events are associated with large negative impacts on human society, mainly as they may trigger floods and landslides. Therefore, it is important to better understand underlying physical mechanisms leading to extremes and how they are reproduced in climate models.</p><p>The present study evaluates ability of current climate models to reproduce relationships between large-scale heavy precipitation and atmospheric circulation over central Europe. We use an ensemble of 32 regional climate model (RCM) simulations with the 0.11° resolution, taken from the Euro-CORDEX project. The statistics are compared for the recent climate simulations (1951-2005) against observations from the E-OBS gridded data set to identify main drawbacks of the RCMs. The large-scale heavy precipitation events are defined as days with at least 50% of all grid points over the examined area with heavy precipitation (exceeding the 75th or 90th percentile of the distribution of seasonal rainy days). The association with atmospheric circulation types is investigated through circulation types derived from sea level pressure using airflow indices (direction, strength and vorticity). The analysis is carried out separately for summer (JJA) and winter (DJF) season.</p><p>The number of days with large-scale heavy precipitation per season in observations reflects the seasonal precipitation sums (the larger precipitation sum the more days). In winter, the large-scale heavy precipitation is mainly associated with the west, northwest, southwest and cyclonic circulation types while in summer with the cyclonic, north, southwest and undefined types (in the observed data). Some RCM simulations are not able to reproduce the number of days with the large-scale heavy precipitation events and their relationships with circulation, especially in summer.</p>


Sign in / Sign up

Export Citation Format

Share Document