Simulated disruptions of the Quasi-Biennial Oscillation

Author(s):  
Kevin DallaSanta ◽  
Clara Orbe

<p>The Quasi-Biennial Oscillation has exhibited remarkable stability over the observational record—until a well-documented 2015/16 disruption and an emerging disruption in 2020/21. The possibility that disruptions are more frequent in a changing climate is important to consider, as the QBO affects predictability, stratospheric composition, and surface weather. However, this possibility is challenging to assess for a variety of reasons. For instance, the 2015/16 disruption has been attributed to anomalous easterly momentum flux from extratropical waves. By comparison, the 2020/21 disruption involves anomalous westerly forcing, less likely to originate from the same mechanism.</p><p>We present a rich variety of QBO disruptions that spontaneously arise in integrations of the high-top NASA GISS Model E2.2. The disruptions loosely fall into several categories, some of which are analogous to the 2015/16 disruption and the 2020 disruption, as well as a previously undocumented possible disruption in 1988. Several factors appear to influence QBO disruptions in the model: natural variability, climate change, tropical SSTs, volcanic eruptions, and model physics/tuning. Although QBO representation is an ongoing challenge for models, the results point to a model-independent framework for assessment of disruptions.</p><p> </p>

2018 ◽  
Vol 75 (11) ◽  
pp. 3753-3775 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun ◽  
Young-Ha Kim ◽  
Peter Preusse ◽  
Manfred Ern

Abstract The characteristics of small-scale convective gravity waves (CGWs; horizontal wavelengths <100 km) and their contributions to the large-scale flow in the stratosphere, including the quasi-biennial oscillation (QBO), are investigated using an offline calculation of a source-dependent, physically based CGW parameterization with global reanalysis data from 1979 to 2010. The CGW momentum flux (CGWMF) and CGW drag (CGWD) are calculated from the cloud top (source level) to the upper stratosphere using a Lindzen-type wave propagation scheme. The 32-yr-mean CGWD exhibits large magnitudes in the tropical upper stratosphere and near the stratospheric polar night jet (~60°). The maximum positive drag is 0.1 (1.5) m s−1 day−1, and the maximum negative drag is −0.9 (−0.7) m s−1 day−1 in January (July) between 3 and 1 hPa. In the tropics, the momentum forcing by CGWs at 30 hPa associated with the QBO in the westerly shear zone is 3.5–6 m s−1 month−1, which is smaller than that by Kelvin waves, while that by CGWs in the easterly shear zone (3.1–6 m s−1 month−1) is greater than that by any other equatorial planetary waves or inertio-gravity waves (inertio-GWs). Composite analyses of the easterly QBO (EQBO) and westerly QBO (WQBO) phases reveal that the zonal CGWMF is concentrated near 10°N and that the negative (positive) CGWD extends latitudinally to ±20° (±10°) at 30 hPa. The strongest (weakest) negative CGWD is in March–May (September–November) during the EQBO, and the strongest (weakest) positive CGWD is in June–August (March–May) during the WQBO. The CGWMF and CGWD are generally stronger during El Niño than during La Niña in the equatorial region.


2019 ◽  
Vol 76 (11) ◽  
pp. 3553-3567 ◽  
Author(s):  
Aaron Match ◽  
Stephan Fueglistaler

Abstract The quasi-biennial oscillation (QBO) is a descending pattern of winds in the stratosphere that vanishes near the top of the tropical tropopause layer, even though the vertically propagating waves that drive the QBO are thought to originate in the troposphere several kilometers below. The region where there is low QBO power despite sufficient vertically propagating wave activity to drive a QBO is known as the buffer zone. Classical one-dimensional models of the QBO are ill suited to represent buffer zone dynamics because they enforce the attenuation of the QBO via a zero-wind lower boundary condition. The formation of the buffer zone is investigated by analyzing momentum budgets in the reanalyses MERRA-2 and ERA-Interim. The buffer zone must be formed by weak wave-driven acceleration and/or cancellation of the wave-driven acceleration. This paper shows that in MERRA-2 weak wave-driven acceleration is insufficient to form the buffer zone, so cancellation of the wave-driven acceleration must play a role. The cancellation results from damping of angular momentum anomalies, primarily due to horizontal mean and horizontal eddy momentum flux divergence, with secondary contributions from the Coriolis torque and vertical mean momentum flux divergence. The importance of the damping terms highlights the role of the buffer zone as the mediator of angular momentum exchange between the QBO domain and the far field. Some far-field angular momentum anomalies reach the solid Earth, leading to the well-documented lagged correlation between the QBO and the length of day.


2013 ◽  
Vol 13 (9) ◽  
pp. 25157-25184
Author(s):  
A. C. Kren ◽  
D. R. Marsh ◽  
A. K. Smith ◽  
P. Pilewskie

Abstract. The response of the stratosphere to the combined interaction of the Quasi-Biennial Oscillation (QBO) and the solar cycle, and the influence of the solar cycle on the QBO, are investigated using the Whole Atmosphere Community Climate Model. A transient simulation was run from 1850–2005 with fully interactive ocean, chemistry, greenhouse gases, volcanic eruptions, and an internally generated QBO. The model QBO produces a realistic representation of equatorial stratospheric winds. The simulation results are analyzed to examine the modulation of the Holton–Tan effect by the solar cycle. Over ~ 40 yr periods a correlation is sometimes found between the northern polar geopotential heights and the 255 nm solar irradiance when the data are separated as a function of QBO phase. At other times, the correlation switches sign; it is not robust over the entire simulation. Complementing this are analyses of several additional model runs: an additional interactive QBO simulation and an ensemble of simulations using a prescribed QBO. The results raise the possibility of a chance occurrence in the observed polar solar-QBO response. In addition, we do not find a significant modulation of either the QBO period or amplitude by the solar cycle.


Sign in / Sign up

Export Citation Format

Share Document