Quantifying CO2 emissions of power plants with the CO2M mission

Author(s):  
Gerrit Kuhlmann ◽  
Stephan Henne ◽  
Yasjka Meijer ◽  
Lukas Emmenegger ◽  
Dominik Brunner

<p>In this study, we analyse the capability of the Copernicus CO<sub>2</sub> monitoring (CO2M) satellite mission to quantify the CO<sub>2</sub> emissions of individual power plants, which is one of the prime goals of the mission. The study relies on synthetic CO<sub>2</sub> and NO<sub>2</sub> satellite observations over parts of the Czech Republic, Germany and Poland and quantifies the CO<sub>2</sub> and NO<sub>x</sub> emissions of the 15 largest power plants in that region using a data-driven mass-balance approach.</p><p>The synthetic observations were generated for six CO2M satellites based on high-resolution simulations of the atmospheric transport model COSMO-GHG. To identify the emission plumes, we developed a plume detection algorithm that identifies the location, orientation and extent of multiple plumes from CO2M's NO<sub>2</sub> observations. Afterwards, a mass-balance approach was applied to individual plumes to estimate CO<sub>2</sub> and NO<sub>x</sub> emissions by fitting Gaussian curves to the across-plume signals. Annual emissions were obtained by interpolating the temporally sparse individual estimates applying a low-order spline fit.</p><p>Individual CO<sub>2</sub> emissions were estimated with an accuracy <65% for a source strength >10 Mt CO<sub>2</sub> yr<sup>-1</sup>, while NO<sub>x</sub> emissions >10 kt NO<sub>2</sub> yr<sup>-1 </sup>were estimated with <56% accuracy. NO<sub>2</sub> observations were essential for detecting the plume and constraining the shape of the Gaussian curve. With three CO2M satellites, annual CO<sub>2</sub> emissions were estimated with an uncertainty <30% for source strengths larger than 10 Mt yr<sup>-1</sup>, which includes an estimate of the uncertainty in the temporal variability of emissions. Annual NO<sub>x</sub> emissions were estimated with an uncertainty <21%. Since NO<sub>x</sub> emissions can be determined with better accuracy, estimating CO<sub>2</sub> emissions directly from the NO<sub>x</sub> emissions by applying a representative CO<sub>2</sub>:NO<sub>x</sub> emission ratio  seems appealing but this approach was found to suffer significantly from the high uncertainty in the  CO<sub>2</sub>:NO<sub>x</sub> emission ratios determined from the same CO2M observations.</p><p>Our study shows that CO2M should be able to quantify the emissions of the 400 largest point sources globally with emissions larger than 10 Mt yr<sup>-1</sup> that account for about 20 % of global anthropogenic CO<sub>2</sub> emissions. However, the mass-balance approach used here has relatively high uncertainties that are dominated by the uncertainties in the estimated CO<sub>2</sub> background and the wind speed in the plume, and uncertainties associated with the sparse temporal sampling of the varying emissions. Estimates could be significantly improved if these parameters can be better constrained, e.g., with atmospheric transport simulations and independent observations.</p>

2021 ◽  
Vol 2 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Stephan Henne ◽  
Yasjka Meijer ◽  
Dominik Brunner

One important goal of the Copernicus CO2 monitoring (CO2M) mission is to quantify CO2 emissions of large point sources. We analyzed the feasibility of such quantifications using synthetic CO2 and NO2 observations for a constellation of CO2M satellites. Observations were generated from kilometer-scale COSMO-GHG simulations over parts of the Czech Republic, Germany and Poland. CO2 and NOX emissions of the 15 largest power plants (3.7–40.3 Mt CO2 yr−1) were quantified using a data-driven method that combines a plume detection algorithm with a mass-balance approach. CO2 and NOX emissions could be estimated from single overpasses with 39–150% and 33–116% uncertainty (10–90th percentile), respectively. NO2 observations were essential for estimating CO2 emissions as they helped detecting and constraining the shape of the plumes. The uncertainties are dominated by uncertainties in the CO2M observations (2–72%) and limitations of the mass-balance approach to quantify emissions of complex plumes (25–95%). Annual CO2 emissions could be estimated with 23–119% and 18–65% uncertainties with two and three satellites, respectively. The uncertainty in the temporal variability of emissions contributes about half to the total uncertainty. The estimated uncertainty was extrapolated to determine uncertainties for point sources globally, suggesting that two satellites would be able to quantify the emissions of up to 300 point sources with <30% uncertainty, while adding a third satellite would double the number to about 600 point sources. Annual NOX emissions can be determined with better accuracy of 16–73% and 13–52% with two and three satellites, respectively. Estimating CO2 emissions from NOX emissions using a CO2:NOX emission ratio may thus seem appealing, but this approach is significantly limited by the high uncertainty in the emission ratios as determined from the same CO2M observations. The mass-balance approach studied here will be particularly useful for estimating emissions in countries where power plant emissions are not routinely monitored and reported. Further reducing the uncertainties will require the development of advanced atmospheric inversion systems for emission plumes and an improved constraint on the temporal variability of emissions using additional sources of information such as other satellite observations or energy demand statistics.


2020 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Dominik Brunner ◽  
Grégoire Broquet ◽  
Yasjka Meijer

Abstract. We investigate the potential of the Copernicus Anthropogenic Carbon Dioxide (CO2) Monitoring (CO2M) mission, a proposed constellation of CO2 imaging satellites, to estimate the CO2 emissions of a city on the example of Berlin, the capital of Germany. On average, Berlin emits about 20 Mt CO2 yr−1 during satellite overpass (11:30 local time). The study uses synthetic satellite observations of a constellation of up to six satellites generated from one year of high-resolution atmospheric transport simulations. The emissions were estimated by (1) an analytical atmospheric inversion applied to the plume of Berlin simulated by the same model that was used to generate the synthetic observations, and (2) a mass-balance approach that estimates the CO2 flux through multiple cross-sections of the city plume detected by a plume detection algorithm. The plume was either detected from CO2 observations alone or from additional nitrogen dioxide (NO2) observations on the same platform. The two approaches span the range between the optimistic assumption of a perfect transport model that provides an accurate prediction of plume location and CO2 background, and the pessimistic assumption that plume location and background can only be determined reliably from the satellite observations. Often unfavorable meteorological conditions allowed to successfully apply the analytical inversion to only 11 out of 61 overpasses per satellite per year on average. From a single overpass, the instantaneous emissions of Berlin could be estimated with an average precision of 3.0 to 4.2 Mt yr−1 (15–21 % of emissions during overpass) depending on the assumed instrument noise ranging from 0.5 to 1.0 ppm. Applying the mass balance approach required the detection of a sufficiently large plume, which on average was only possible on 3 overpasses per satellite per year when using CO2 observations for plume detection. This number doubled to 6 estimates when the plumes were detected from NO2 observations due to the better signal-to-noise ratio and lower sensitivity to clouds of the measurements. Compared to the analytical inversion, the mass balance approach had a lower precision ranging from 8.1 to 10.7 Mt yr−1 (40–53 %), because it is affected by additional uncertainties introduced by the estimation of the location of the plume, the CO2 background field, and the wind speed within the plume. These uncertainties also resulted in systematic biases, especially without the NO2 observations. An additional source of bias were non-separable fluxes from outside of Berlin. Annual emissions were estimated by fitting a low-order periodic spline to the individual estimates to account for the temporal variability of the emissions. The analytical inversion was able to estimate annual emissions with an accuracy of  40 %)) when using the CO2 observations alone. When using the NO2 observations to detect the plume, the accuracy could be greatly improved to 22 % and 13 % with two and three satellites, respectively. Using the complementary information provided by the CO2 and NO2 observations on the CO2M mission, it should be possible to quantify annual emissions of a city like Berlin with an accuracy of about 10 to 20 %, even in the pessimistic case that plume location and CO2 background have to be determined from the observations alone. This requires, however, that the temporal coverage of the constellation is sufficiently high to resolve the temporal variability of emissions.


2020 ◽  
Vol 13 (12) ◽  
pp. 6733-6754
Author(s):  
Gerrit Kuhlmann ◽  
Dominik Brunner ◽  
Grégoire Broquet ◽  
Yasjka Meijer

Abstract. We investigate the potential of the Copernicus Anthropogenic Carbon Dioxide (CO2) Monitoring (CO2M) mission, a proposed constellation of CO2 imaging satellites, to estimate the CO2 emissions of a city on the example of Berlin, the capital of Germany. On average, Berlin emits about 20 Mt CO2 yr−1 during satellite overpass (11:30 LT). The study uses synthetic satellite observations of a constellation of up to six satellites generated from 1 year of high-resolution atmospheric transport simulations. The emissions were estimated by (1) an analytical atmospheric inversion applied to the plume of Berlin simulated by the same model that was used to generate the synthetic observations and (2) a mass-balance approach that estimates the CO2 flux through multiple cross sections of the city plume detected by a plume detection algorithm. The plume was either detected from CO2 observations alone or from additional nitrogen dioxide (NO2) observations on the same platform. The two approaches were set up to span the range between (i) the optimistic assumption of a perfect transport model that provides an accurate prediction of plume location and CO2 background and (ii) the pessimistic assumption that plume location and background can only be determined reliably from the satellite observations. Often unfavorable meteorological conditions allowed us to successfully apply the analytical inversion to only 11 out of 61 overpasses per satellite per year on average. From a single overpass, the instantaneous emissions of Berlin could be estimated with an average precision of 3.0 to 4.2 Mt yr−1 (15 %–21 % of emissions during overpass) depending on the assumed instrument noise ranging from 0.5 to 1.0 ppm. Applying the mass-balance approach required the detection of a sufficiently large plume, which on average was only possible on three overpasses per satellite per year when using CO2 observations for plume detection. This number doubled to six estimates when the plumes were detected from NO2 observations due to the better signal-to-noise ratio and lower sensitivity to clouds of the measurements. Compared to the analytical inversion, the mass-balance approach had a lower precision ranging from 8.1 to 10.7 Mt yr−1 (40 % to 53 %), because it is affected by additional uncertainties introduced by the estimation of the location of the plume, the CO2 background field, and the wind speed within the plume. These uncertainties also resulted in systematic biases, especially without the NO2 observations. An additional source of bias was non-separable fluxes from outside of Berlin. Annual emissions were estimated by fitting a low-order periodic spline to the individual estimates to account for the seasonal variability of the emissions, but we did not account for the diurnal cycle of emissions, which is an additional source of uncertainty that is difficult to characterize. The analytical inversion was able to estimate annual emissions with an accuracy of < 1.1 Mt yr−1 (< 6 %) even with only one satellite, but this assumes perfect knowledge of plume location and CO2 background. The accuracy was much smaller when applying the mass-balance approach, which determines plume location and background directly from the satellite observations. At least two satellites were necessary for the mass-balance approach to have a sufficiently large number of estimates distributed over the year to robustly fit a spline, but even then the accuracy was low (> 8 Mt yr−1 (>40 %)) when using the CO2 observations alone. When using the NO2 observations to detect the plume, the accuracy could be greatly improved to 22 % and 13 % with two and three satellites, respectively. Using the complementary information provided by the CO2 and NO2 observations on the CO2M mission, it should be possible to quantify annual emissions of a city like Berlin with an accuracy of about 10 % to 20 %, even in the pessimistic case that plume location and CO2 background have to be determined from the observations alone. This requires, however, that the temporal coverage of the constellation is sufficiently high to resolve the temporal variability of emissions.


2016 ◽  
Author(s):  
E. D. Keller ◽  
J. C. Turnbull ◽  
M. W. Norris

Abstract. We examine the utility of tree ring 14C archives for detecting long term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004-05 and 2011-12 from two trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods given both measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42% or more could be detected in a new sample from one year at the same observation location, or 22% in the case of four years of new samples. This threshold lowers and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustaine d emissions changes on the order of 10% given suitable meteorology and observations.


2019 ◽  
Vol 12 (12) ◽  
pp. 6695-6719 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Grégoire Broquet ◽  
Julia Marshall ◽  
Valentin Clément ◽  
Armin Löscher ◽  
...  

Abstract. High-resolution atmospheric transport simulations were used to investigate the potential for detecting carbon dioxide (CO2) plumes of the city of Berlin and neighboring power stations with the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission, which is a proposed constellation of CO2 satellites with imaging capabilities. The potential for detecting plumes was studied for satellite images of CO2 alone or in combination with images of nitrogen dioxide (NO2) and carbon monoxide (CO) to investigate the added value of measurements of other gases coemitted with CO2 that have better signal-to-noise ratios. The additional NO2 and CO images were either generated for instruments on the same CO2M satellites (2 km× 2 km resolution) or for the Sentinel-5 instrument (7.5 km× 7.5 km) assumed to fly 2 h earlier than CO2M. Realistic CO2, CO and NOX(=NO+NO2) fields were simulated at 1 km× 1 km horizontal resolution with the Consortium for Small-scale Modeling model extended with a module for the simulation of greenhouse gases (COSMO-GHG) for the year 2015, and they were used as input for an orbit simulator to generate synthetic observations of columns of CO2, CO and NO2 for constellations of up to six satellites. A simple plume detection algorithm was applied to detect coherent structures in the images of CO2, NO2 or CO against instrument noise and variability in background levels. Although six satellites with an assumed swath of 250 km were sufficient to overpass Berlin on a daily basis, only about 50 out of 365 plumes per year could be observed in conditions suitable for emission estimation due to frequent cloud cover. With the CO2 instrument only 6 and 16 of these 50 plumes could be detected assuming a high-noise (σVEG50=1.0 ppm) and low-noise (σVEG50=0.5 ppm) scenario, respectively, because the CO2 signals were often too weak. A CO instrument with specifications similar to the Sentinel-5 mission performed worse than the CO2 instrument, while the number of detectable plumes could be significantly increased to about 35 plumes with an NO2 instrument. CO2 and NO2 plumes were found to overlap to a large extent, although NOX had a limited lifetime (assumed to be 4 h) and although CO2 and NOX were emitted with different NOX:CO2 emission ratios by different source types with different temporal and vertical emission profiles. Using NO2 observations from the Sentinel-5 platform instead resulted in a significant spatial mismatch between NO2 and CO2 plumes due to the 2 h time difference between Sentinel-5 and CO2M. The plumes of the coal-fired power plant Jänschwalde were easier to detect with the CO2 instrument (about 40–45 plumes per year), but, again, an NO2 instrument could detect significantly more plumes (about 70). Auxiliary measurements of NO2 were thus found to greatly enhance the capability of detecting the location of CO2 plumes, which will be invaluable for the quantification of CO2 emissions from large point sources.


2019 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Grégoire Broquet ◽  
Julia Marshall ◽  
Valentin Clément ◽  
Armin Löscher ◽  
...  

Abstract. High-resolution atmospheric transport simulations were used to investigate the potential for detecting carbon dioxide (CO2) plumes of the city of Berlin and neighboring power stations with the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission, which is a proposed constellation of CO2 satellites with imaging capabilities. The potential for detecting plumes was studied for satellite images of CO2 alone or in combination with images of nitrogen dioxide (NO2) and carbon monoxide (CO) to investigate the added value of measurements of other gases co-emitted with CO2 that have better signal-to-noise ratios. The additional NO2 and CO images were either generated for instruments on the same CO2M satellites (2×2 km2 resolution) or for the Sentinel-5 instrument (7×7 km2) assumed to fly two hours earlier than CO2M. Realistic CO2, CO and NO2 fields were simulated at 1×1 km2 horizontal resolution with COSMO-GHG model for the year 2015, and used as input for an orbit simulator to generate synthetic observations of columns of CO2, CO and NO2 for constellations of up to six satellites. A new plume detection algorithm was applied to detect coherent structures in the images of CO2, NO2 or CO against instrument noise and variability in background levels. Although six satellites with an assumed swath of 250 km were sufficient to overpass Berlin on a daily basis, only about 50 out of 365 plumes per year could be observed in conditions suitable for emission estimation due to frequent cloud cover. With the CO2 instrument only 6 and 16 of these 50 plumes could be detected assuming a high (σVEG50 = 1.0 ppm) and low noise (σVEG50 = 0.5 ppm) scenario, respectively, because the CO2 signals were often too weak. A CO instrument with specifications similar to the Sentinel-5 mission performed worse than the CO2 instrument, while the number of detectable plumes could be significantly increased to about 35 plumes with an NO2 instrument. Using NO2 observations from the Sentinel-5 platform instead resulted in a significant spatial mismatch between NO2 and CO2 plumes due to the two hour time difference between Sentinel-5 and CO2M. The plumes of the coal-fired power plant Jänschwalde were easier to detect with the CO2 instrument (about 40–45 plumes per year), but again, an NO2 instrument performed significantly better (about 70 plumes). Auxiliary measurements of NO2 were thus found to greatly enhance the capability of detecting the location of CO2 plumes, which will be invaluable for the quantification of CO2 emissions from large point sources.


2021 ◽  
Author(s):  
Fabian Maier ◽  
Christoph Gerbig ◽  
Ingeborg Levin ◽  
Ingrid Super ◽  
Julia Marshall ◽  
...  

Abstract. An appropriate representation of point source emissions in atmospheric transport models is very challenging. In the Stochastic Time Inverted Lagrangian Transport model (STILT), all point source emissions are typically released from the surface, meaning that the actual emission stack height plus subsequent plume rise is not considered. This can lead to erroneous predictions of trace gas concentrations, especially during nighttime when vertical atmospheric mixing is minimal. In this study we use two WRF–STILT model approaches to simulate fossil fuel CO2 (ffCO2) concentrations: (1) the standard “surface source influence (SSI)” approach, and (2) an alternative “volume source influence (VSI)” approach, where nearby point sources release CO2 according to their effective emission height profiles. The comparison with 14C-based measured ffCO2 data from two-week integrated afternoon and nighttime samples collected at Heidelberg, 30 m above ground level, shows that the root-mean-square deviation (RMSD) between modelled and measured ffCO2 is indeed almost twice as high during night (RMSD = 6.3 ppm) compared to the afternoon (RMSD = 3.7 ppm) when using the standard SSI approach. In contrast, the VSI approach leads to a much better performance at nighttime (RMSD = 3.4 ppm), which is similar to its performance during afternoon (RMSD = 3.7 ppm). Representing nearby point source emissions with the VSI approach could, thus, be a first step towards exploiting nocturnal observations in STILT. To further investigate the differences between these two approaches, we conducted a model experiment in which we simulated the ffCO2 contributions from 12 artificial power plants with typical annual emissions of one million tons of CO2 and with distances between 5 and 200 km from the Heidelberg observation site. We find that such a power plant must be more than 50 km away from the observation site in order for the mean modelled ffCO2 concentration difference between the SSI and VSI approach to fall below 0.1 ppm.


Sign in / Sign up

Export Citation Format

Share Document