scholarly journals Effects of point source emission heights in WRF–STILT: a step towards exploiting nocturnal observations in models

2021 ◽  
Author(s):  
Fabian Maier ◽  
Christoph Gerbig ◽  
Ingeborg Levin ◽  
Ingrid Super ◽  
Julia Marshall ◽  
...  

Abstract. An appropriate representation of point source emissions in atmospheric transport models is very challenging. In the Stochastic Time Inverted Lagrangian Transport model (STILT), all point source emissions are typically released from the surface, meaning that the actual emission stack height plus subsequent plume rise is not considered. This can lead to erroneous predictions of trace gas concentrations, especially during nighttime when vertical atmospheric mixing is minimal. In this study we use two WRF–STILT model approaches to simulate fossil fuel CO2 (ffCO2) concentrations: (1) the standard “surface source influence (SSI)” approach, and (2) an alternative “volume source influence (VSI)” approach, where nearby point sources release CO2 according to their effective emission height profiles. The comparison with 14C-based measured ffCO2 data from two-week integrated afternoon and nighttime samples collected at Heidelberg, 30 m above ground level, shows that the root-mean-square deviation (RMSD) between modelled and measured ffCO2 is indeed almost twice as high during night (RMSD = 6.3 ppm) compared to the afternoon (RMSD = 3.7 ppm) when using the standard SSI approach. In contrast, the VSI approach leads to a much better performance at nighttime (RMSD = 3.4 ppm), which is similar to its performance during afternoon (RMSD = 3.7 ppm). Representing nearby point source emissions with the VSI approach could, thus, be a first step towards exploiting nocturnal observations in STILT. To further investigate the differences between these two approaches, we conducted a model experiment in which we simulated the ffCO2 contributions from 12 artificial power plants with typical annual emissions of one million tons of CO2 and with distances between 5 and 200 km from the Heidelberg observation site. We find that such a power plant must be more than 50 km away from the observation site in order for the mean modelled ffCO2 concentration difference between the SSI and VSI approach to fall below 0.1 ppm.

2016 ◽  
Author(s):  
E. D. Keller ◽  
J. C. Turnbull ◽  
M. W. Norris

Abstract. We examine the utility of tree ring 14C archives for detecting long term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004-05 and 2011-12 from two trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods given both measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42% or more could be detected in a new sample from one year at the same observation location, or 22% in the case of four years of new samples. This threshold lowers and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustaine d emissions changes on the order of 10% given suitable meteorology and observations.


2021 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Stephan Henne ◽  
Yasjka Meijer ◽  
Lukas Emmenegger ◽  
Dominik Brunner

<p>In this study, we analyse the capability of the Copernicus CO<sub>2</sub> monitoring (CO2M) satellite mission to quantify the CO<sub>2</sub> emissions of individual power plants, which is one of the prime goals of the mission. The study relies on synthetic CO<sub>2</sub> and NO<sub>2</sub> satellite observations over parts of the Czech Republic, Germany and Poland and quantifies the CO<sub>2</sub> and NO<sub>x</sub> emissions of the 15 largest power plants in that region using a data-driven mass-balance approach.</p><p>The synthetic observations were generated for six CO2M satellites based on high-resolution simulations of the atmospheric transport model COSMO-GHG. To identify the emission plumes, we developed a plume detection algorithm that identifies the location, orientation and extent of multiple plumes from CO2M's NO<sub>2</sub> observations. Afterwards, a mass-balance approach was applied to individual plumes to estimate CO<sub>2</sub> and NO<sub>x</sub> emissions by fitting Gaussian curves to the across-plume signals. Annual emissions were obtained by interpolating the temporally sparse individual estimates applying a low-order spline fit.</p><p>Individual CO<sub>2</sub> emissions were estimated with an accuracy <65% for a source strength >10 Mt CO<sub>2</sub> yr<sup>-1</sup>, while NO<sub>x</sub> emissions >10 kt NO<sub>2</sub> yr<sup>-1 </sup>were estimated with <56% accuracy. NO<sub>2</sub> observations were essential for detecting the plume and constraining the shape of the Gaussian curve. With three CO2M satellites, annual CO<sub>2</sub> emissions were estimated with an uncertainty <30% for source strengths larger than 10 Mt yr<sup>-1</sup>, which includes an estimate of the uncertainty in the temporal variability of emissions. Annual NO<sub>x</sub> emissions were estimated with an uncertainty <21%. Since NO<sub>x</sub> emissions can be determined with better accuracy, estimating CO<sub>2</sub> emissions directly from the NO<sub>x</sub> emissions by applying a representative CO<sub>2</sub>:NO<sub>x</sub> emission ratio  seems appealing but this approach was found to suffer significantly from the high uncertainty in the  CO<sub>2</sub>:NO<sub>x</sub> emission ratios determined from the same CO2M observations.</p><p>Our study shows that CO2M should be able to quantify the emissions of the 400 largest point sources globally with emissions larger than 10 Mt yr<sup>-1</sup> that account for about 20 % of global anthropogenic CO<sub>2</sub> emissions. However, the mass-balance approach used here has relatively high uncertainties that are dominated by the uncertainties in the estimated CO<sub>2</sub> background and the wind speed in the plume, and uncertainties associated with the sparse temporal sampling of the varying emissions. Estimates could be significantly improved if these parameters can be better constrained, e.g., with atmospheric transport simulations and independent observations.</p>


2016 ◽  
Author(s):  
Dominik Schmithüsen ◽  
Scott Chambers ◽  
Bernd Fischer ◽  
Stefan Gilge ◽  
Juha Hatakka ◽  
...  

Abstract. A European-wide 222Radon/222Radon progeny comparison study has been conducted in order to determine correction factors that could be applied to existing atmospheric 222Radon data sets for quantitative use of this tracer in atmospheric transport model validation. Two compact and easy-to-transport Heidelberg Radon Monitors (HRM) were moved around to run for at least one month at each of the nine European measurement stations that were included in the comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO/HRM = 1.11 ± 0.05 was found. For continental stations, which use one-filter systems, preliminary 214Po/222Rn disequilibrium values were estimated to lie between 0.8 at mountain stations (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level. Respective corrections need to be applied to obtain a consistent European 222Radon data set for further applications.


2015 ◽  
Vol 15 (21) ◽  
pp. 31053-31087 ◽  
Author(s):  
Y. Chen ◽  
Y. F. Cheng ◽  
S. Nordmann ◽  
W. Birmili ◽  
H. A. C. Denier van der Gon ◽  
...  

Abstract. Elemental Carbon (EC) has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc) emission in the nearby point sources might be overestimated by a factor of 2–10. The emission fraction of EC in coarse mode was overestimated by about 10–30 % for Russian and 5–10 % for Eastern Europe (e.g.: Poland and Belarus), respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25–35 and 25–55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.


2021 ◽  
Vol 14 (7) ◽  
pp. 4411-4428
Author(s):  
Ying Wei ◽  
Xueshun Chen ◽  
Huansheng Chen ◽  
Yele Sun ◽  
Wenyi Yang ◽  
...  

Abstract. The influence of sub-grid particle formation (SGPF) in point source plumes on aerosol particles over eastern China was firstly illustrated by implementing an SGPF scheme into a global–regional nested chemical transport model with an aerosol microphysics module. The key parameter in the scheme was optimized based on the observations in eastern China. With the parameterization of SGPF, the spatial heterogeneity and diurnal variation in particle formation processes in sub-grid scale were well resolved. The SGPF scheme can significantly improve the model performance in simulating aerosol components and new particle formation processes at typical sites influenced by point sources. The comparison with observations at Beijing, Wuhan and Nanjing showed that the normal mean bias (NMB) of sulfate and ammonium could be reduced by 23 %–27 % and 12 %–14 %, respectively. When wind fields are well reproduced, the correlation of sulfate between simulation and observation can be increased by 0.13 in Nanjing. Considering the diurnal cycle of new particle formation, the SGPF scheme can greatly reduce the overestimation of particle number concentration in nucleation and Aitken mode at night caused by fixed-fraction parameterization of SGPF. On the regional scale, downwind areas of point source experienced an increase in sulfate concentration of 25 %–50 %. The results of this study indicate the significant effects of SGPF on aerosol particles over areas with the point source and the necessity of a reasonable representation of SGPF processes in chemical transport models.


2021 ◽  
Vol 14 (1) ◽  
pp. 403-433
Author(s):  
Diego Santaren ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Frédéric Chevallier ◽  
Denis Siméoni ◽  
...  

Abstract. This work presents a flux inversion system which assesses the potential of new satellite imagery measurements of atmospheric CO2 for monitoring anthropogenic emissions at scales ranging from local intense point sources to regional and national scales. Such imagery measurements will be provided by the future Copernicus Anthropogenic Carbon Dioxide Monitoring Mission (CO2M). While the modeling framework retains the complexity of previous studies focused on individual and large cities, this system encompasses a wide range of sources to extend the scope of the analysis. This atmospheric inversion system uses a zoomed configuration of the CHIMERE regional transport model which covers most of western Europe with a 2 km resolution grid over northern France, western Germany and Benelux. For each day of March and May 2016, over the 6 h before a given satellite overpass, the inversion separately controls the hourly budgets of anthropogenic emissions in this area from ∼ 300 cities, power plants and regions. The inversion also controls hourly regional budgets of the natural fluxes. This enables the analysis of results at the local to regional scales for a wide range of sources in terms of emission budget and spatial extent while accounting for the uncertainties associated with natural fluxes and the overlapping of plumes from different sources. The potential of satellite data for monitoring CO2 fluxes is quantified with posterior uncertainties or uncertainty reductions (URs) from prior inventory-based statistical knowledge. A first analysis focuses on the hourly to 6 h budgets of the emissions of the Paris urban area and on the sensitivity of the results to different characteristics of the images of vertically integrated CO2 (XCO2) corresponding to the spaceborne instrument: the pixel spatial resolution, the precision of the XCO2 retrievals per pixel and the swath width. This sensitivity analysis provides a correspondence between these parameters and thresholds on the targeted precisions of emission estimates. However, the results indicate a large sensitivity to the wind speed and to the prior flux uncertainties. The analysis is then extended to the large ensemble of point sources, cities and regions in the study domain, with a focus on the inversion system's ability to separately monitor neighboring sources whose atmospheric signatures overlap and are also mixed with those produced by natural fluxes. Results highlight the strong dependence of uncertainty reductions on the emission budgets, on the wind speed and on whether the focus is on point or area sources. With the system hypothesis that the atmospheric transport is perfectly known, the results indicate that the atmospheric signal overlap is not a critical issue. All of the tests are conducted considering clear-sky conditions, and the limitations from cloud cover are ignored. Furthermore, in these tests, the inversion system is perfectly informed about the statistical properties of the various sources of errors that are accounted for, and systematic errors in the XCO2 retrievals are ignored; thus, the scores of URs are assumed to be optimistic. For the emissions within the 6 h before a satellite overpass, URs of more than 50 % can only be achieved for power plants and cities whose annual emissions are more than ∼ 2 MtC yr−1. For regional budgets encompassing more diffuse emissions, this threshold increases up to ∼ 10 MtC yr−1. The results therefore suggest an imbalance in the monitoring capabilities of the satellite XCO2 spectro-imagery towards high and dense sources.


2019 ◽  
Vol 12 (12) ◽  
pp. 6695-6719 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Grégoire Broquet ◽  
Julia Marshall ◽  
Valentin Clément ◽  
Armin Löscher ◽  
...  

Abstract. High-resolution atmospheric transport simulations were used to investigate the potential for detecting carbon dioxide (CO2) plumes of the city of Berlin and neighboring power stations with the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission, which is a proposed constellation of CO2 satellites with imaging capabilities. The potential for detecting plumes was studied for satellite images of CO2 alone or in combination with images of nitrogen dioxide (NO2) and carbon monoxide (CO) to investigate the added value of measurements of other gases coemitted with CO2 that have better signal-to-noise ratios. The additional NO2 and CO images were either generated for instruments on the same CO2M satellites (2 km× 2 km resolution) or for the Sentinel-5 instrument (7.5 km× 7.5 km) assumed to fly 2 h earlier than CO2M. Realistic CO2, CO and NOX(=NO+NO2) fields were simulated at 1 km× 1 km horizontal resolution with the Consortium for Small-scale Modeling model extended with a module for the simulation of greenhouse gases (COSMO-GHG) for the year 2015, and they were used as input for an orbit simulator to generate synthetic observations of columns of CO2, CO and NO2 for constellations of up to six satellites. A simple plume detection algorithm was applied to detect coherent structures in the images of CO2, NO2 or CO against instrument noise and variability in background levels. Although six satellites with an assumed swath of 250 km were sufficient to overpass Berlin on a daily basis, only about 50 out of 365 plumes per year could be observed in conditions suitable for emission estimation due to frequent cloud cover. With the CO2 instrument only 6 and 16 of these 50 plumes could be detected assuming a high-noise (σVEG50=1.0 ppm) and low-noise (σVEG50=0.5 ppm) scenario, respectively, because the CO2 signals were often too weak. A CO instrument with specifications similar to the Sentinel-5 mission performed worse than the CO2 instrument, while the number of detectable plumes could be significantly increased to about 35 plumes with an NO2 instrument. CO2 and NO2 plumes were found to overlap to a large extent, although NOX had a limited lifetime (assumed to be 4 h) and although CO2 and NOX were emitted with different NOX:CO2 emission ratios by different source types with different temporal and vertical emission profiles. Using NO2 observations from the Sentinel-5 platform instead resulted in a significant spatial mismatch between NO2 and CO2 plumes due to the 2 h time difference between Sentinel-5 and CO2M. The plumes of the coal-fired power plant Jänschwalde were easier to detect with the CO2 instrument (about 40–45 plumes per year), but, again, an NO2 instrument could detect significantly more plumes (about 70). Auxiliary measurements of NO2 were thus found to greatly enhance the capability of detecting the location of CO2 plumes, which will be invaluable for the quantification of CO2 emissions from large point sources.


2016 ◽  
Vol 113 (37) ◽  
pp. 10287-10291 ◽  
Author(s):  
Jocelyn Christine Turnbull ◽  
Elizabeth D. Keller ◽  
Margaret W. Norris ◽  
Rachael M. Wiltshire

Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 (14CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric 14CO2. These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions.


2020 ◽  
Vol 13 (11) ◽  
pp. 5813-5831 ◽  
Author(s):  
Yilong Wang ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Franck Lespinas ◽  
Michael Buchwitz ◽  
...  

Abstract. This study assesses the potential of satellite imagery of vertically integrated columns of dry-air mole fractions of CO2 (XCO2) to constrain the emissions from cities and power plants (called emission clumps) over the whole globe during 1 year. The imagery is simulated for one imager of the Copernicus mission on Anthropogenic Carbon Dioxide Monitoring (CO2M) planned by the European Space Agency and the European Commission. The width of the swath of the CO2M instruments is about 300 km and the ground horizontal resolution is about 2 km resolution. A Plume Monitoring Inversion Framework (PMIF) is developed, relying on a Gaussian plume model to simulate the XCO2 plumes of each emission clump and on a combination of overlapping assimilation windows to solve for the inversion problem. The inversion solves for the 3 h mean emissions (during 08:30–11:30 local time) before satellite overpasses and for the mean emissions during other hours of the day (over the aggregation between 00:00–08:30 and 11:30–00:00) for each clump and for the 366 d of the year. Our analysis focuses on the derivation of the uncertainty in the inversion estimates (the “posterior uncertainty”) of the clump emissions. A comparison of the results obtained with PMIF and those from a previous study using a complex 3-D Eulerian transport model for a single city (Paris) shows that the PMIF system provides the correct order of magnitude for the uncertainty reduction of emission estimates (i.e., the relative difference between the prior and posterior uncertainties). Beyond the one city or few large cities studied by previous studies, our results provide, for the first time, the global statistics of the uncertainty reduction of emissions for the full range of global clumps (differing in emission rate and spread, and distance from other major clumps) and meteorological conditions. We show that only the clumps with an annual emission budget higher than 2 MtC yr−1 can potentially have their emissions between 08:30 and 11:30 constrained with a posterior uncertainty smaller than 20 % for more than 10 times within 1 year (ignoring the potential to cross or extrapolate information between 08:30–11:30 time windows on different days). The PMIF inversion results are also aggregated in time to investigate the potential of CO2M observations to constrain daily and annual emissions, relying on the extrapolation of information obtained for 08:30–11:30 time windows during days when clouds and aerosols do not mask the plumes, based on various assumptions regarding the temporal auto-correlations of the uncertainties in the emission estimates that are used as a prior knowledge in the Bayesian framework of PMIF. We show that the posterior uncertainties of daily and annual emissions are highly dependent on these temporal auto-correlations, stressing the need for systematic assessment of the sources of uncertainty in the spatiotemporally resolved emission inventories used as prior estimates in the inversions. We highlight the difficulty in constraining the total budget of CO2 emissions from all the cities and power plants within a country or over the globe with satellite XCO2 measurements only, and calls for integrated inversion systems that exploit multiple types of measurements.


2016 ◽  
Vol 9 (7) ◽  
pp. 3063-3093 ◽  
Author(s):  
Carsten Warneke ◽  
Michael Trainer ◽  
Joost A. de Gouw ◽  
David D. Parrish ◽  
David W. Fahey ◽  
...  

Abstract. Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.


Sign in / Sign up

Export Citation Format

Share Document