Last Glacial Maximum Antarctic sea ice linked with global mean ocean temperature: evidence from PMIP3, PMIP4 and MIROC-4m simulations

Author(s):  
Tristan Vadsaria ◽  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Takashi Obase ◽  
Wing-Le Chan ◽  
...  

<p>Southern Ocean sea ice and oceanic fronts are known to play an important role on the climate system, carbon cycles, bottom ocean circulation, and Antarctic ice sheet. However, many models of the previous Past-climate Model Intercomparison Project (PMIP) underestimated sea-ice extent (SIE) for the Last Glacial Maximum (LGM)(Roche et al., 2012; Marzocchi and Jensen, 2017), mainly because of surface bias (Flato et al., 2013) that may have an impact on mean ocean temperature (MOT). Indeed, recent studies further suggest an important link between Southern Ocean sea ice and mean ocean temperature (Ferrari et al., 2014; Bereiter et al., 2018 among others). Misrepresent the Antarctic sea-ice extent could highly impact deep ocean circulation, the heat transport and thus the MOT. In this study, we will stress the relationship between the distribution of Antarctic sea-ice extent and the MOT through the analysis of the PMIP3 and PMIP4 exercise and by using a set of MIROC models. To date, the latest version of MIROC improve its representation of the LGM Antarctic sea-ice extent, affecting the deep circulation and the MOT distribution (Sherriff-Tadano et al., under review).</p><p>Our results show that available PMIP4 models have an overall improvement in term of LGM sea-ice extent compared to PMIP3, associated to colder deep and bottom ocean temperature. Focusing on MIROC (4m) models, we show that models accounting for Southern Ocean sea-surface temperature (SST) bias correction reproduce an Antarctic sea-ice extent, 2D-distribution, and seasonal amplitude in good agreement with proxy-based data. Finally, using PMIP-MIROC analyze, we show that it exists a relationship between the maximum SIE and the MOT, modulated by the Antarctic intermediate and bottom waters.</p>

2021 ◽  
Vol 17 (2) ◽  
pp. 805-824
Author(s):  
André Paul ◽  
Stefan Mulitza ◽  
Rüdiger Stein ◽  
Martin Werner

Abstract. We present a climatology of the near-sea-surface temperature (NSST) anomaly and the sea-ice extent during the Last Glacial Maximum (LGM, 23 000–19 000 years before present) mapped on a global regular 1∘×1∘ grid. It is an extension of the Glacial Atlantic Ocean Mapping (GLAMAP) reconstruction of the Atlantic NSST based on the faunal and floral assemblage data of the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project and several recent estimates of the LGM sea-ice extent. Such a gridded climatology is highly useful for the visualization of the LGM climate, calculation of global and regional NSST averages, and estimation of the equilibrium climate sensitivity, as well as a boundary condition for atmospheric general circulation models. The gridding of the sparse NSST reconstruction was done in an optimal way using the Data-Interpolating Variational Analysis (DIVA) software, which takes into account the uncertainty in the reconstruction and includes the calculation of an error field. The resulting Glacial Ocean Map (GLOMAP) confirms the previous findings by the MARGO project regarding longitudinal and meridional NSST differences that were greater than today in all oceans. Taken at face value, the estimated global and tropical cooling would imply an equilibrium climate sensitivity at the lower end of the currently accepted range. However, because of anticipated changes in the seasonality and thermal structure of the upper ocean during the LGM as well as uneven spatial sampling, the estimated cooling and implied climate sensitivity are likely to be biased towards lower values.


2020 ◽  
Author(s):  
Hyeong-Gyu Kim ◽  
Joowan Kim ◽  
Sang-Yoon Jun ◽  
Seong-Joong Kim

<p>Paleoclimate data shows a good correlation between the concentration of CO<sub>2</sub> and atmospheric temperature in the geological timescale. Many studies compare the Last Glacial Maximum (LGM) and the Pre-Industrial era (PI), to understand the coupling processes. A popular mechanism explaining this coupling process is a modulation of the ocean circulation and related CO<sub>2</sub> emission over the Southern Ocean due to atmospheric westerly. The atmospheric westerly plays an important role in driving ocean circulation; however, the related processes are not fully understood for the LGM period.</p><p>In this study, we examine physical processes determining the characteristics of the atmospheric westerly focusing on the Southern Ocean. Atmospheric states for LGM and PI are reproduced using a coupled earth system model with different sea ice conditions. A poleward intensification of the Southern Hemispheric Westerlies is observed for the LGM experiment. A comparison to PI shows that the meridional temperature gradient largely determines this intensification, and the enhanced meridional gradient is observed due to decreased heat flux from the subantarctic ocean in the LGM experiment. This result suggests that the Antarctic sea ice is a crucial component for understanding the Southern Hemispheric Westerly.</p>


2019 ◽  
Author(s):  
Cameron M. O'Neill ◽  
Andrew McC. Hogg ◽  
Michael J. Ellwood ◽  
Bradley N. Opdyke ◽  
Stephen M. Eggins

Abstract. We conduct a model-data analysis of the ocean, atmosphere and terrestrial carbon system to understand their effects on atmospheric CO2 during the last glacial cycle. We use a carbon cycle box model SCP-M, combined with multiple proxy data for the atmosphere and ocean, to test for variations in ocean circulation and biological productivity across marine isotope stages spanning 130 thousand years ago to the present. The model is constrained by proxy data associated with a range of environmental conditions including sea surface temperature, salinity, ocean volume, sea ice cover and shallow water carbonate production. Model parameters for global ocean circulation, Atlantic meridional overturning circulation and Southern Ocean biological export productivity are optimised in each marine isotope stage, against proxy data for atmospheric CO2, δ13C and ∆14C and deep ocean δ13C, ∆14C and carbonate ion. Our model-data results suggest that global overturning circulation weakened at marine isotope stage 5d, coincident with a ∼ 25 ppm fall in atmospheric CO2 from the penultimate interglacial level. This change was followed by a further slowdown in Atlantic meridional overturning circulation and enhanced Southern Ocean biological export productivity at marine isotope stage 4 (∼−30 ppm). There was also a transient slowdown in Atlantic meridional overturning circulation at MIS 5b. In this model, the last glacial maximum was characterised by relatively weak global ocean and Atlantic meridional overturning circulation, and increased Southern Ocean biological export productivity (∼−15–20 ppm during MIS 2–4). Ocean circulation and Southern Ocean biology rebounded to modern values by the Holocene period. The terrestrial biosphere decreased by ∼ 500 Pg C in the lead up to the last glacial maximum, followed by a period of intense regrowth during the Holocene (∼ 750 Pg C). Slowing ocean circulation, a cooler ocean and, to a lesser extent, shallow carbonate dissolution, contributed ∼−75 ppm to atmospheric CO2 in the ∼ 100 thousand-year lead-up to the last glacial maximum, with a further ∼−10 ppm contributed during the glacial maximum. Our model results also suggest that an increase in Southern Ocean biological productivity was one of the ingredients required to achieve the last glacial maximum atmospheric CO2 level. The incorporation of longer-timescale data into quantitative ocean transport models, provides useful insights into the timing of changes in ocean processes, enhancing our understanding of the last glacial maximum and Holocene carbon cycle transition.


1997 ◽  
Vol 9 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Kim A. Krebs ◽  
Mark C.G. Mabin

Alpine-type valley and cirque glaciers occur in many massifs in the northern Prince Charles Mountains. A total of forty-seven glaciers have been investigated using maps and aerial photographs, and in the summer of 1991–92 seventeen of these were examined in the field. The distribution of these glaciers and their present-day snowline line altitudes appear to be influenced by their location with respect to snow-bearing winds, particularly the summer winds that bring moisture from the open waters of Prydz Bay. Moraine morphologies indicate that these glaciers advance and retreat out-of-phase with the larger ice sheet outlet glaciers. During the last glacial maximum the alpine-type glaciers retreated while the ice sheet outlet glaciers showed a minor expansion. This is believed to be due to the alpine-type glaciers being starved of snowfall as the expanded last glacial maximum sea-ice cover around the continent would have removed their maritime moisture sources. Recent contrasts in the behaviour of the alpine glaciers may reflect changes in summer sea ice extent in Prydz Bay.


Sign in / Sign up

Export Citation Format

Share Document