Morphological effects of a hydraulic lifting dam on the middle Fenhe River, China

Author(s):  
Yufang Ni ◽  
Zhixian Cao ◽  
Wenjun Qi ◽  
Xiangbin Chai ◽  
Aili Zhao

<p>Hydraulic lifting dams become increasingly popular in China for water storage, river landscaping and environmental restoration. Inevitably, dams influence riverine morphology. Unfortunately, current understanding of this topic has remained rather limited. Here, the morphological effects of a hydraulic lifting dam on the middle Fenhe River, China are investigated. This reach features a compound channel and floodplains, and the riverbed is mainly composed of silt that can be easily eroded, indicating potential significant bed deformation. A computationally efficient depth-averaged two-dimensional shallow water hydro-sediment-morphodynamic model is employed. Unstructured meshes are refined around dam structures to accurately present topography. The numerical predictions show discrepancies of morphological responses of the main channel and floodplains to different operation schemes of the hydraulic lifting dam. This work helps to support decisions on the management of hydraulic lifting dams on the middle Fenhe River and reveals a general pattern for the morphological impact of hydraulic lifting dam.</p>

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


2021 ◽  
pp. 105152
Author(s):  
Victor Michel-Dansac ◽  
Christophe Berthon ◽  
Stéphane Clain ◽  
Françoise Foucher

1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2021 ◽  
Vol 60 (4) ◽  
pp. 513-526
Author(s):  
Bhupendra A. Raut ◽  
Robert Jackson ◽  
Mark Picel ◽  
Scott M. Collis ◽  
Martin Bergemann ◽  
...  

AbstractA robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.


Author(s):  
Gaurav Chauda ◽  
Daniel J. Segalman

A discretization strategy for elastic contact on a half plane has been devised to explore the significance of different friction models on joint-like interface mechanics. It is necessary to verify that discretization and accompanying contact algorithm on known solutions. An extensive comparison of numerical predictions of this model with corresponding 2-D elastic, frictional contact solutions from the literature is presented.


Sign in / Sign up

Export Citation Format

Share Document