Investigating vegetation role on UHI with mechanistic modelling worldwide

Author(s):  
Ziyan Zhang ◽  
Athanasios Paschalis ◽  
Ana Mijic ◽  
Naika Meili ◽  
Simone Fatichi

<p>The urban heat island effect (UHI), defined as the temperature difference between urban areas and their surroundings, has been widely observed in many cities worldwide, impacting urban energy demand, citizen’s comfort and health. UHI intensities have been found to depend on background climate, and the urban fabric, including built (building thermal properties, heights, reflectance) and natural characteristics (vegetation cover, species composition, vegetation management). In this study, we focus on developing a global scale mechanistic understanding of how each of those properties alters the urban energy budget and leads to UHI development. To achieve this goal, we use the state-of-art urban ecohydrological and land-surface model (urban Tethys-Chloris) to perform a set of detailed UHI simulations for multiple large urban clusters across America, Europe and China in a 10-year time period (2009-2019), spanning a gradient of aridity, vegetation amount, and different compositions of the urban fabric. Model simulations were set up using the latest generation remote sensing data and climate reanalysis (ERA5). Using the simulations, we develop a paradigm of how UHIs develop worldwide, and propose viable solutions for sustainable UHI mitigation.</p>

2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

<p>The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.</p><p>These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.</p><p>Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agustì-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaquìn Munõz-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).</p>


2017 ◽  
Vol 10 (1) ◽  
pp. 85-104 ◽  
Author(s):  
Hector Simon Benavides Pinjosovsky ◽  
Sylvie Thiria ◽  
Catherine Ottlé ◽  
Julien Brajard ◽  
Fouad Badran ◽  
...  

Abstract. The SECHIBA module of the ORCHIDEE land surface model describes the exchanges of water and energy between the surface and the atmosphere. In the present paper, the adjoint semi-generator software called YAO was used as a framework to implement a 4D-VAR assimilation scheme of observations in SECHIBA. The objective was to deliver the adjoint model of SECHIBA (SECHIBA-YAO) obtained with YAO to provide an opportunity for scientists and end users to perform their own assimilation. SECHIBA-YAO allows the control of the 11 most influential internal parameters of the soil water content, by observing the land surface temperature or remote sensing data such as the brightness temperature. The paper presents the fundamental principles of the 4D-VAR assimilation, the semi-generator software YAO and a large number of experiments showing the accuracy of the adjoint code in different conditions (sites, PFTs, seasons). In addition, a distributed version is available in the case for which only the land surface temperature is observed.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2738
Author(s):  
Andrea Reimuth ◽  
Veronika Locherer ◽  
Martin Danner ◽  
Wolfram Mauser

The strong expansion of residential rooftop photovoltaic (PV) and battery storage systems of recent years is expected to rise further. However, it is not yet clear to which degree buildings will be equipped with decentral energy producers. This study seeks to quantify the effects of different PV and battery installation rates on the residential residual loads and grid balancing flows. A land surface model with an integrated residential energy component is applied, which maintains spatial peculiarities and allows a building-specific set-up of PV systems, batteries, and consumption loads. The study area covers 3163 residential buildings located in a municipality in the south of Germany. The obtained results show minor impacts on the residual loads for a PV installation rate of less than 10%. PV installation rates of one third of all residential buildings of the study region lead to the highest spatial balancing via the grid. The rise in self-consumption when utilizing batteries leads to declined grid balancing between the buildings. For high PV installation rates, regional balancing diminishes, whereas energy excesses rise to 60%. They can be decreased up to 10% by the utilization of battery systems. Therefore, we recommend subsidy programs adjusted to the respective PV installation rates.


2006 ◽  
Vol 111 (D18) ◽  
Author(s):  
Anne-Laure Gibelin ◽  
Jean-Christophe Calvet ◽  
Jean-Louis Roujean ◽  
Lionel Jarlan ◽  
Sietse O. Los

2019 ◽  
Author(s):  
Ting Sun ◽  
Sue Grimmond

Abstract. Accurate and agile modelling of the climate of cities is essential for urban climate services. The Surface Urban Energy and Water balance Scheme (SUEWS) is a state-of-the-art, widely used, urban land surface model (ULSM) which simulates urban-atmospheric interactions by quantifying the energy, water and mass fluxes. Using SUEWS as the computation kernel, SuPy (SUEWS in Python), stands on the Python-based data stack to streamline the pre-processing, computation and post-processing that are involved in the common modelling-centred urban climate studies. This paper documents the development of SuPy, which includes the SUEWS interface modification, F2PY (Fortran to Python) configuration and Python frontend implementation. In addition, the deployment of SuPy via PyPI (Python Package Index) is introduced along with the automated workflow for cross-platform compilation. This makes SuPy available for all mainstream operating systems (Windows, Linux, and macOS). Furthermore, three online tutorials in Jupyter notebooks are provided to users of different levels to become familiar with SuPy urban climate modelling. The SuPy package represents a significant enhancement that supports existing and new model applications, reproducibility, and enhanced functionality.


2020 ◽  
Author(s):  
Anthony Bernus ◽  
Catherine Ottle ◽  
Nina Raoult

<p>Lakes play a major role on local climate and boundary layer stratification. At global scale, they have been shown to have an impact on the energy budget, (see for example Le Moigne et al., 2016 or Bonan, 1995 ) . To represent the energy budget of lakes at a global scale, the FLake (Mironov et al, 2008) lake model has been coupled to the ORCHIDEE land surface model - the continental part of the IPSL earth system model. By including Flake in ORCHIDEE, we aim to improve the representation of land surface temperature and heat fluxes. Using the standard CMIP6 configuration of ORCHIDEE,  two 40-year simulations were generated (one coupled with FLake and one without) using the CRUJRA meteorological forcing data at a spatial resolution of 0.5°. We compare land surface temperatures and heat fluxes from the two ORCHIDEE simulations and assess the impacts of lakes on surface energy budgets. MODIS satellite land surface temperature products will be used to validate the simulations. We expect a better fit between the simulated land surface temperature and the MODIS data when the FLake configuration is used. The preliminary results of the comparison will be presented.</p>


2020 ◽  
Author(s):  
Jaime Gaona ◽  
Pere Quintana-Seguí ◽  
Maria José Escorihuela

<p>The Mediterranean climate of the Iberian Peninsula defines high spatial and temporal variability of drought at multiple scales. These droughts impact human activities such as water management, agriculture or forestry, and may alter valuable natural ecosystems as well. An accurate understanding and monitoring of drought processes are crucial in this area. The HUMID project (CGL2017-85687-R) is studying how remote sensing data and models (Quintana-Seguí et al., 2019; Barella-Ortiz and Quintana-Seguí, 2019) can improve our current knowledge on Iberian droughts, in general, and in the Ebro basin, more specifically.</p><p>The traditional ground-based monitoring of drought lacks the spatial resolution needed to identify the microclimatic mechanisms of drought at sub-basin scale, particularly when considering relevant variables for drought such as soil moisture and evapotranspiration. In situ data of these two variables is very scarce.</p><p>The increasing availability of remote sensing products such as MODIS16 A2 ET and the high-resolution SMOS 1km facilitates the use of distributed observations for the analysis of drought patterns across scales. The data is used to generate standardized drought indexes: the soil moisture deficit index (SMDI) based on SMOS 1km data (2010-2019) and the evapotranspiration deficit index (ETDI) based on MODIS16 A2 ET 500m. The study aims to identify the spatio-temporal mechanisms of drought generation, propagation and mitigation within the Ebro River basin and sub-basins, located in NE Spain where dynamic Atlantic, Mediterranean and Continental climatic influences dynamically mix, causing a large heterogeneity in climates.</p><p>Droughts in the 10-year period 2010-2019 of study exhibit spatio-temporal patterns at synoptic and mesoscale scales. Mesoscale spatio-temporal patterns prevail for the SMDI while the ETDI ones show primarily synoptic characteristics. The study compares the patterns of drought propagation identified with remote sensing data with the patterns estimated using the land surface model SURFEX-ISBA at 5km.  The comparison provides further insights about the capabilities and limitations of both tools, while emphasizes the value of combining approaches to improve our understanding about the complexity of drought processes across scales.</p><p>Additionally, the periods of quick change of drought indexes comprise valuable information about the response of evapotranspiration to water deficits as well as on the resilience of soil to evaporative stress. The lag analysis ranges from weeks to seasons. Results show lags between the ETDI and SMDI ranging from days to weeks depending on the precedent drought status and the season/month of drought’s generation or mitigation. The comparison of the lags observed on remote sensing data and land surface model data aims at evaluating the adequacy of the data sources and the indexes to represent the nonlinear interaction between soil moisture and evapotranspiration. This aspect is particularly relevant for developing drought monitoring aiming at managing the impact of drought in semi-arid environments and improving the adaptation to drought alterations under climate change.</p>


2021 ◽  
Author(s):  
Semjon Schimanke ◽  
Ludvig Isaksson ◽  
Lisette Edvinsson ◽  
Martin Ridal ◽  
Lars Berggren ◽  
...  

<p>The Copernicus European regional reanalysis (https://climate.copernicus.eu/regional-reanalysis-europe) is produced as part of the Copernicus Climate Change Service (C3S). The presentation will introduce the service and its main objectives as well as it will give and overview of available data. Data quality will be demonstrated by comparison with ERA5 and other gridded datasets.</p><p>In the first phase of the service, systems inherited from the FP7 project UERRA (Uncertainties in Ensembles of Regional ReAnalyses, http://www.uerra.eu) were applied extending the UERRA-HARMONIE as well as the MESCAN-SURFEX datasets. These datasets contain analyses of the atmosphere, the surface and the soil. UERRA-HARMONIE is a full model system including a 3D-Var data assimilation scheme for upper air observations and an OI-scheme for surface observations. MESCAN-SURFEX is a complementary 2D surface analysis system interfaced to a land surface model. Data is available for entire Europe at a horizontal resolution of 11 km for UERRA-HARMONIE and at 5.5 km for MESCAN-SURFEX. The systems provide four analyses per day – at 0 UTC, 6 UTC, 12 UTC, and 18 UTC. Between the analyses ranges, forecasts of the systems are available with hourly resolution. More than fifty parameters are available on various level types. Data are available for the period 1961 – July 2019 through Copernicus Climate Data Store (CDS).</p><p>In spring 2020, the service started the production of the next generation regional reanalysis. The successor comprises three components:<br>- CERRA (5.5 km horizontal resolution)<br>- CERRA-EDA (10-member ensemble at 11 km resolution)<br>- CERRA-Land (5.5 km horizontal resolution)</p><p>In addition to the higher resolution, CERRA is more sophisticated than UERRA. For instance, more observations are assimilated into CERRA, in particular remote sensing data. CERRA is produced with 3-hourly cycling and a flow depending part of the B-matrix is derived from CERRA-EDA. The production of CERRA, CERRA-EDA and CERRA-Land will complete in September/October 2021 and data will become available in the CDS shortly thereafter.</p><p>The quality of the regional reanalysis in comparison to ERA5 will be shown with results of the standard HARMONIE-verification package as well as based on certain case studies. For instance, the winter storm Gudrun (January 2005, southern Sweden) will be investigated.</p>


2021 ◽  
Vol 18 (9) ◽  
pp. 2917-2955
Author(s):  
Fabienne Maignan ◽  
Camille Abadie ◽  
Marine Remaud ◽  
Linda M. J. Kooijmans ◽  
Kukka-Maaria Kohonen ◽  
...  

Abstract. Land surface modellers need measurable proxies to constrain the quantity of carbon dioxide (CO2) assimilated by continental plants through photosynthesis, known as gross primary production (GPP). Carbonyl sulfide (COS), which is taken up by leaves through their stomates and then hydrolysed by photosynthetic enzymes, is a candidate GPP proxy. A former study with the ORCHIDEE land surface model used a fixed ratio of COS uptake to CO2 uptake normalised to respective ambient concentrations for each vegetation type (leaf relative uptake, LRU) to compute vegetation COS fluxes from GPP. The LRU approach is known to have limited accuracy since the LRU ratio changes with variables such as photosynthetically active radiation (PAR): while CO2 uptake slows under low light, COS uptake is not light limited. However, the LRU approach has been popular for COS–GPP proxy studies because of its ease of application and apparent low contribution to uncertainty for regional-scale applications. In this study we refined the COS–GPP relationship and implemented in ORCHIDEE a mechanistic model that describes COS uptake by continental vegetation. We compared the simulated COS fluxes against measured hourly COS fluxes at two sites and studied the model behaviour and links with environmental drivers. We performed simulations at a global scale, and we estimated the global COS uptake by vegetation to be −756 Gg S yr−1, in the middle range of former studies (−490 to −1335 Gg S yr−1). Based on monthly mean fluxes simulated by the mechanistic approach in ORCHIDEE, we derived new LRU values for the different vegetation types, ranging between 0.92 and 1.72, close to recently published averages for observed values of 1.21 for C4 and 1.68 for C3 plants. We transported the COS using the monthly vegetation COS fluxes derived from both the mechanistic and the LRU approaches, and we evaluated the simulated COS concentrations at NOAA sites. Although the mechanistic approach was more appropriate when comparing to high-temporal-resolution COS flux measurements, both approaches gave similar results when transporting with monthly COS fluxes and evaluating COS concentrations at stations. In our study, uncertainties between these two approaches are of secondary importance compared to the uncertainties in the COS global budget, which are currently a limiting factor to the potential of COS concentrations to constrain GPP simulated by land surface models on the global scale.


2014 ◽  
Vol 11 (5) ◽  
pp. 5217-5250 ◽  
Author(s):  
I. E. M. de Graaf ◽  
E. H. Sutanudjaja ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water availability.


Sign in / Sign up

Export Citation Format

Share Document