Effects of vegetation as an ecosystem service on the changes in runoff and sediment yield in a Mediterranean semi-arid basin

Author(s):  
María Rosario Vidal-Abarca Gutiérrez ◽  
Alberto Martínez-Salvador ◽  
Carmelo Conesa-García ◽  
María Luisa Suárez-Alonso ◽  
Francisco Alonso-Sarria ◽  
...  

<p>Semiarid basins contribute significantly to sediment loads, as they are often characterized by torrential flows, source areas with high sediment-producing rates, great availability of erodible material subjected to intense weathering processes, and poor vegetation cover. Vegetation, despite its scarce presence, is a dynamic component of this environment, which provides a range of important ecosystem services such as biodiversity, flood retention, nutrient sink, erosion control and groundwater recharge. This study examines the vegetation responses to the magnitude of peak flows and its contribution to the changes in runoff and sediment yield during the period 1997-2020 in a catchment Mediterranean semiarid basin: The Rambla de la Azohía (southeastern Spain).Vegetation type, density, preferred location and degree of permanence in each sub-basin were analyzed in order to determine their degree of influence on surface runoff and erosion control. Changes in riparian vegetation cover was quantified at large scale for the analysis period (1997-2020), using remotely sensed spatial information, such as satellite images and aerial photographs separated by two years on average (at scales from 1:15000 to 1:30000, and resolution between 0.22 and 0.50 m/pixel). A geo-spatial erosion prediction model was applied to estimate the runoff and sediment load generated at the event scale, taking into account the variability of the vegetation cover in each sub-basin. The simulated outputs of this model were previously calibrated with water levels measured by pressure sensors and suspended sediment records.The results showed both a poor response of vegetation (low incidence in the runoff coefficient) in steep metamorphic watersheds, capable of supplying large sediment loads, and functioned as an efficient ecosystem service (stabilization of slopes and decrease in peak flow) in less steep sub-basins with slopes in the shadow, composed of limestone formations and alluvial fans. This suggests important spatial differences in the vegetation impact, according to other environmental conditions intrinsic to each sub-basin, but also a low overall influence on the temporal variability of sediment fluxes at the event scale. This research was funded by FEDER/Spanish Ministry of Science, Innovation and Universities—State Research Agency (AEI)/Projects CGL2017-84625-C2-1-R and CGL2017-84625-C2-2-R; State Program for Research, Development and Innovation Focused on the Challenges of Society.</p>

2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Ossama M.M. Abdelwahab ◽  
Tiziana Bisantino ◽  
Fabio Milillo ◽  
Francesco Gentile

The AnnAGNPS model was used to estimate runoff, peak discharge and sediment yield at the event scale in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2) located in Apulia, Southern Italy. The model was calibrated and validated using five years of runoff and sediment yield data measured at a monitoring station located at Ordona – Ponte dei Sauri Bridge. A total of 36 events was used to estimate the output of the model during the period 2007-2011, in comparison to the corresponding observations at the watershed outlet. The model performed well in predicting runoff, as was testified by the high values of the coefficients of efficiency and determination during the validation process. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment yield was good, even if a slight over-estimation was observed. Finally, the model was used to evaluate the effectiveness of different Management practices (MPs) on the watershed (converting wheat to forest, using vegetated streams, crop rotation corn/soybean, no tillage). While the maximum reduction in sediment yield was achieved converting wheat to forest, the best compromises between soil conservation and agriculture resulted to be crop rotations.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1373 ◽  
Author(s):  
Shanghong Zhang ◽  
Zehao Li ◽  
Xiaonan Lin ◽  
Cheng Zhang

Climate change has an important impact on water balance and material circulation in watersheds. Quantifying the influence of climate and climate-driven vegetation cover changes on watershed-scale runoff and sediment yield will help to deepen our understanding of the environmental effects of climate change. Taking the Zhenjiangguan Watershed in Sichuan Province, China as a case study, three downscaled general circulation models with two emission scenarios were used to generate possible climatic conditions for three future periods of P1 (2020–2039), P2 (2050–2069) and P3 (2080–2099). Differences in scenarios were compared with the base period 1980–1999. Then, a Normalized Difference Vegetation Index climate factor regression model was established to analyze changes to vegetation cover under the climate change scenarios. Finally, a Soil and Water Assessment Tool model was built to simulate the response of runoff and sediment yield in the three future periods under two different scenarios: only changes in climate and synergistic changes in climate and vegetation cover. The temperature and precipitation projections showed a significant increasing trend compared to the baseline condition for both emission scenarios. Climate change is expected to increase the average annual runoff by 15%–38% compared with the base period, and the average annual sediment yield will increase by 4%–32%. The response of runoff and sediment yield varies in different periods, scenarios, and sub-watersheds. Climate-driven vegetation cover changes have an impact on runoff and sediment yield in the watershed, resulting in a difference of 5.8%–12.9% to the total changes. To some extent, the changes in vegetation cover will inhibit the hydrological impact of climate changes. The study helps to clarify the effects of climate and vegetation cover factors on hydrological variations in watersheds and provides further support for understanding future hydrological scenarios and implementing effective protection and use of water and soil resources.


Author(s):  
D.V. ZATSARINNAYA ◽  
E.M. VOLKOVA ◽  
A.A. SIRIN

Vegetation cover and environmental factors were studied in the system of karts mires in the broad- leaved forest zone in Tula Region, Central European Russia. Mires are formed in the sinkholes and characterized by rather low anthropogenic disturbances. These mires are characterised by floating peat mats and variety of vegetation communities which are differ by ecological conditions (water levels, acidity and nutrition). Development and growth of floating mats change water and mineral feeding that leads to succession of vegetation communities.


1998 ◽  
Vol 78 (4) ◽  
pp. 699-706 ◽  
Author(s):  
S. I. Gill ◽  
M. A. Naeth ◽  
D. S. Chanasyk ◽  
V. S. Baron

Currently, there is interest in Western Canada in extending the grazing season using perennial and annual forages. Of greatest concern is the environmental sustainability of these grazing systems, with emphasis on their ability to withstand erosion. A study to examine the runoff and sediment yields of annual and perennial forages in central Alberta was initiated in 1994. Runoff and sediment yield were quantified under snowmelt and rainfall events for two seasons. Rainfall simulation was used to further examine runoff under growing season conditions. Four forage treatments (two annuals: triticale and a barley/triticale mixture and two perennials: smooth bromegrass and meadow bromegrass) and three grazing intensities (light, medium and heavy) were studied, each replicated four times. Total annual runoff was dominated by snowmelt. Generally runoff volumes, sediment yields, sediment ratios and runoff coefficients were all low. Bare ground increased with increasing grazing intensity and was significantly greater in annuals than perennials for all grazing intensities. Litter biomass decreased with increasing grazing intensity and was generally similar in all species for both years at heavy and medium grazing intensities. Results from the rainfall simulation corroborated those under natural rainfall conditions and generally indicated the sustainability of these grazing systems at this site. Key words: Forages, soil erosion, sustainability, rainfall simulation


2012 ◽  
Vol 57 (8) ◽  
pp. 1610-1625 ◽  
Author(s):  
Víctor Hugo Durán Zuazo ◽  
José Ramón Francia Martínez ◽  
Iván García Tejero ◽  
Carmen Rocío Rodríguez Pleguezuelo ◽  
Armando Martínez Raya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document