scholarly journals Assessment of Climate Change and Associated Vegetation Cover Change on Watershed-Scale Runoff and Sediment Yield

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1373 ◽  
Author(s):  
Shanghong Zhang ◽  
Zehao Li ◽  
Xiaonan Lin ◽  
Cheng Zhang

Climate change has an important impact on water balance and material circulation in watersheds. Quantifying the influence of climate and climate-driven vegetation cover changes on watershed-scale runoff and sediment yield will help to deepen our understanding of the environmental effects of climate change. Taking the Zhenjiangguan Watershed in Sichuan Province, China as a case study, three downscaled general circulation models with two emission scenarios were used to generate possible climatic conditions for three future periods of P1 (2020–2039), P2 (2050–2069) and P3 (2080–2099). Differences in scenarios were compared with the base period 1980–1999. Then, a Normalized Difference Vegetation Index climate factor regression model was established to analyze changes to vegetation cover under the climate change scenarios. Finally, a Soil and Water Assessment Tool model was built to simulate the response of runoff and sediment yield in the three future periods under two different scenarios: only changes in climate and synergistic changes in climate and vegetation cover. The temperature and precipitation projections showed a significant increasing trend compared to the baseline condition for both emission scenarios. Climate change is expected to increase the average annual runoff by 15%–38% compared with the base period, and the average annual sediment yield will increase by 4%–32%. The response of runoff and sediment yield varies in different periods, scenarios, and sub-watersheds. Climate-driven vegetation cover changes have an impact on runoff and sediment yield in the watershed, resulting in a difference of 5.8%–12.9% to the total changes. To some extent, the changes in vegetation cover will inhibit the hydrological impact of climate changes. The study helps to clarify the effects of climate and vegetation cover factors on hydrological variations in watersheds and provides further support for understanding future hydrological scenarios and implementing effective protection and use of water and soil resources.

2021 ◽  
Author(s):  
Sergio Andres Romero-Duque ◽  
Maria Cristina Arenas-Bautista ◽  
Leonardo David Donado

<p>Hydrological cycle dynamics can be simulated through continuous numerical modelling in order to estimate a water budget at different time and spatial scales, taking a specific importance when considering climate change effects on the various processes that take place on a basin. With the purpose of estimating potential impacts of climate change on the basin water balance, the present study takes place on the catchment area of the Carare-Minero river, a basin located in the Middle Magdalena Valley (Colombia), a zone in which important economic activities unfold such as stockbreeding and agriculture, where regional climate change scenarios were made for the precipitation and temperature variables, along with a continuous hydrological modeling of the basin using the HEC-HMS software. The regional scenarios for the precipitation and temperature were developed through statistical downscaling based on General Circulation Models (GCM) of the sixth phase of the Coupled Intercomparison Project (CMIP6), with projections to 2100 for seven of the new set of CO2 emission scenarios, the Shared Socioeconomic Pathways (SSP), that take into account different socioeconomic assumptions for climate policies, with a baseline of 25 years between 1990 and 2014; the emission scenarios evaluated from lowest to highest CO2 emission were SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0 and SSP5-8.5. The obtained data were used as an input for the model of the basin in HEC-HMS obtaining a new water balance for each scenario comparing the results with the baseline case for current conditions, resulting in an evapotranspiration increase due to higher temperatures that, alongside changes in precipitation, produces lower flows for the higher SSP’s of SSP5-8.5 and SSP3-7.0, in contrast with the low emission scenarios of SSP1-1.9 and SSP1-2.6 were the changes in temperature and precipitation are less drastic generating minor alterations in the hydrological balance.</p><p>Key words: Hydrological modeling, Middle Magdalena Valley, regional climate change scenarios, water balance.</p>


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


Author(s):  
Dao Nguyen Khoi ◽  
Truong Thao Sam ◽  
Pham Thi Loi ◽  
Bui Viet Hung ◽  
Van Thinh Nguyen

Abstract In this paper, the responses of hydro-meteorological drought to changing climate in the Be River Basin located in Southern Vietnam are investigated. Climate change scenarios for the study area were statistically downscaled using the Long Ashton Research Station Weather Generator tool, which incorporates climate projections from Coupled Model Intercomparison Project 5 (CMIP5) based on an ensemble of five general circulation models (Can-ESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). The Soil and Water Assessment Tool model was employed to simulate streamflow for the baseline time period and three consecutive future 20 year periods of 2030s (2021–2040), 2050s (2041–2060), and 2070s (2061–2080). Based on the simulation results, the Standardized Precipitation Index and Standardized Discharge Index were estimated to evaluate the features of hydro-meteorological droughts. The hydrological drought has 1-month lag time from the meteorological drought and the hydro-meteorological droughts have negative correlations with the El Niño Southern Oscillation and Pacific Decadal Oscillation. Under the climate changing impacts, the trends of drought severity will decrease in the future; while the trends of drought frequency will increase in the near future period (2030s), but decrease in the following future periods (2050 and 2070s). The findings of this study can provide useful information to the policy and decisionmakers for a better future planning and management of water resources in the study region.


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2021 ◽  
Author(s):  
María Rosario Vidal-Abarca Gutiérrez ◽  
Alberto Martínez-Salvador ◽  
Carmelo Conesa-García ◽  
María Luisa Suárez-Alonso ◽  
Francisco Alonso-Sarria ◽  
...  

<p>Semiarid basins contribute significantly to sediment loads, as they are often characterized by torrential flows, source areas with high sediment-producing rates, great availability of erodible material subjected to intense weathering processes, and poor vegetation cover. Vegetation, despite its scarce presence, is a dynamic component of this environment, which provides a range of important ecosystem services such as biodiversity, flood retention, nutrient sink, erosion control and groundwater recharge. This study examines the vegetation responses to the magnitude of peak flows and its contribution to the changes in runoff and sediment yield during the period 1997-2020 in a catchment Mediterranean semiarid basin: The Rambla de la Azohía (southeastern Spain).Vegetation type, density, preferred location and degree of permanence in each sub-basin were analyzed in order to determine their degree of influence on surface runoff and erosion control. Changes in riparian vegetation cover was quantified at large scale for the analysis period (1997-2020), using remotely sensed spatial information, such as satellite images and aerial photographs separated by two years on average (at scales from 1:15000 to 1:30000, and resolution between 0.22 and 0.50 m/pixel). A geo-spatial erosion prediction model was applied to estimate the runoff and sediment load generated at the event scale, taking into account the variability of the vegetation cover in each sub-basin. The simulated outputs of this model were previously calibrated with water levels measured by pressure sensors and suspended sediment records.The results showed both a poor response of vegetation (low incidence in the runoff coefficient) in steep metamorphic watersheds, capable of supplying large sediment loads, and functioned as an efficient ecosystem service (stabilization of slopes and decrease in peak flow) in less steep sub-basins with slopes in the shadow, composed of limestone formations and alluvial fans. This suggests important spatial differences in the vegetation impact, according to other environmental conditions intrinsic to each sub-basin, but also a low overall influence on the temporal variability of sediment fluxes at the event scale. This research was funded by FEDER/Spanish Ministry of Science, Innovation and Universities—State Research Agency (AEI)/Projects CGL2017-84625-C2-1-R and CGL2017-84625-C2-2-R; State Program for Research, Development and Innovation Focused on the Challenges of Society.</p>


<em>Abstract</em>.—Stream fish are expected to be influenced by climate change as they are ectothermic animals living in lotic systems. Using fish presence–absence records in 1,110 stream sites across France, our study aimed at (1) modeling current and future distributions of 35 stream fish species, (2) using an ensemble forecasting approach (i.e., several general circulation models [GCM] × greenhouse gas emission scenarios [GES] × statistical species distribution models [SDM] combinations) to quantify the variability in the future fish species distribution due to each component, and (3) assessing the potential impacts of climate change on fish species distribution and assemblage structure by using a consensus method that accounted for the variability in future projections.


Sign in / Sign up

Export Citation Format

Share Document