Tectono-magmatic evolution of the Karoo and Kerguelen plumes and their impact onto magmatism of the East Antarctica

Author(s):  
Nadezda Sushchevskaya ◽  
German Leitchenkov ◽  
Boris Belyatsky

<p>The Mesozoic Karoo-Maud and Kerguelen plumes had a significant influence on Gondwana and the oceanic lithosphere. Jurassic magmatism, formed under the influence of a huge Karoo plume at 184–178 Ma ago, covered large areas of the Dronning Maud Land in East Antarctica. Later, 130 – 0 m.y. ago, under the influence of the Kerguelen plume, magmatism formed in the area of the Lambert glacier, and the Gaussberg volcano (Quaternary time) appeared, located on the coast opposite the Kerguelen archipelago. We assume that the Karoo mantle plume initiated the formation of a “mega-apophyses” from the main plume manifestation area within the Karoo province in the southeastern African continet (ca. 2000 km in diameter). These mega-apophyses are represented by the Ferrar Igneous Province (ca. 3000 km long area of intrusive activity along the Transantarctic Mountains) and a supposed igneous province (ca. 1500 km long) covering the East Antarctic coast between the Lazarev and Cosmonauts Seas. Based on petrological and geochemical studies, the characteristic features of magmas of the Karoo, Dronning Maud Land, and Ferrar igneous provinces have been determined, which indicate that for all magmas associated with Karoo and Kerguelen plumes, the main source of melt enrichment is a mantle source with characteristics of the EM-II component (most typically for magmas of the Ferrar Province). It reflects the properties of an enriched, fluid-rich, ancient continental mantle, metasomatized at the early stages of the tectonic development of the region and involved in the melting process. A rarer admixture of the ancient lithospheric component (EM-I, with <sup>206</sup>Pb/<sup>204</sup>Pb = 16.5 and <sup>143</sup>Nd/<sup>144</sup>Nd = 0.5122) was revealed in both plumes. The existence of mantle plumes in the Southern Hemisphere and their long-term development had a significant impact on the structure and evolution of the East Antarctica.</p>

2019 ◽  
Vol 486 (1) ◽  
pp. 98-102
Author(s):  
N. M. Sushchevskaya ◽  
B. V. Belyatsky ◽  
G. L. Leitchenkov ◽  
V. G. Batanova ◽  
A. V. Sobolev

Mesozoic dikes associated with the Karoo plume were studied within the East Antarctica where at Queen Maud Land on the Almannryggen massif high-Ti magnesian Fe-basalts were found. It is assumed that such basalts originate by means of the pyroxenite-containing mantle melting. The isotopic characteristics of the studied dolerites reflect the composition of the pyroxenite source - the ancient oceanic lithosphere (ЕМI), submerged at the mantle depths of 150-170 km in the paleosubduction zone of the Gondwanian continent and transformed 180 m.y. ago into the pyroxenite melt when interacting with the plume mantle peridotite.


1990 ◽  
Vol 8 (2) ◽  
pp. 99-126 ◽  
Author(s):  
Y. Ohta ◽  
B. O. Tørudbakken ◽  
K. Shiraishi

1997 ◽  
Vol 9 (1) ◽  
pp. 43-45 ◽  
Author(s):  
U. Wand ◽  
G. Schwarz ◽  
E. Brüggemann ◽  
K. Bräuer

Lake Untersee is the largest freshwater lake in the interior of East Antarctica. It is a perennially ice-covered, max. 169 m deep, ultra-oligotrophic lake. In contrast to earlier studies, we found clear evidence for physical and chemical stratification in the summer of 1991–92. However, the stratification was restricted to a trough, c. 500 m wide and up to 105 m deep, in the south-western part of the lake. There, the water body was distinctly stratified as indicated by sharp vertical gradients of temperature, pH, dissolved oxygen, and electrical conductivity. The water column was anoxic below 80 m. The chemical stratification is also indicated by changes of ionic ratios. Moreover, there was some evidence for methanogenesis and bacterial sulphate reduction in Lake Untersee.


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2021 ◽  
Author(s):  
Sotaro Baba ◽  
Kenji Horie ◽  
Tomokazu Hokada ◽  
Mami Takehara ◽  
Atsushi Kamei ◽  
...  

Antarctica ◽  
2006 ◽  
pp. 45-54 ◽  
Author(s):  
Mervin J. D’Souza ◽  
A. V. Keshava Prasad ◽  
Rasik Ravindra

2016 ◽  
Vol 10 (6) ◽  
pp. 2623-2635 ◽  
Author(s):  
Lionel Favier ◽  
Frank Pattyn ◽  
Sophie Berger ◽  
Reinhard Drews

Abstract. The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouin ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10 %, while omitting the same pinning point in data assimilation decreases it by 10 %, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. Pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.


Sign in / Sign up

Export Citation Format

Share Document