Vegetation scenario of Indian part of Ganga Delta: a change analysis using Sentinel-1 time series data on Google earth engine platform

Author(s):  
Bijay Halder ◽  
Jatisankar Bandyopadhyay

2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.



2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.





2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

&lt;p&gt;A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (&lt; 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area &lt; 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (&lt; 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.&lt;/p&gt;



2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.



2017 ◽  
Author(s):  
Solveig H. Winsvold ◽  
Andreas Kääb ◽  
Christopher Nuth ◽  
Liss M. Andreassen ◽  
Ward van Pelt ◽  
...  

Abstract. With dense SAR satellite data time-series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and Radarsat-2 backscatter images over mainland Norway and Svalbard, we have used descriptive methods for outlining the possibilities of using SAR time-series for mapping glaciers. We present five application scenarios, where the first shows potential for tracking transient snow lines with SAR backscatter time-series, and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time-series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time-series together with a coupled energy balance and multi-layer firn model. We find strong correlation between backscatter signals with both the modeled firn air-content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time-series, revealing important information about the area extent of internal accumulation. Finally, in the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time-series data. Our results reveal the potential of satellite imagery for automatically derived products as important input in modeling assessments and glacier change analysis.





Author(s):  
P. Rufin ◽  
A. Rabe ◽  
L. Nill ◽  
P. Hostert

Abstract. Earth observation analysis workflows commonly require mass processing of time series data, with data volumes easily exceeding terabyte magnitude, even for relatively small areas of interest. Cloud processing platforms such as Google Earth Engine (GEE) leverage accessibility to satellite image archives and thus facilitate time series analysis workflows. Instant visualization of time series data and integration with local data sources is, however, currently not implemented or requires coding customized scripts or applications. Here, we present the GEE Timeseries Explorer plugin which grants instant access to GEE from within QGIS. It seamlessly integrates the QGIS user interface with a compact widget for visualizing time series from any predefined or customized GEE image collection. Users can visualize time series profiles for a given coordinate as an interactive plot or visualize images with customized band rendering within the QGIS map canvas. The plugin is available through the QGIS plugin repository and detailed documentation is available online (https://geetimeseriesexplorer.readthedocs.io/).



Author(s):  
A. Tamondong ◽  
T. Nakamura ◽  
T. E. A. Quiros ◽  
K. Nadaoka

Abstract. Seagrasses are marine flowering plants which are part of a highly productive coastal ecosystem and play key roles in the coastal processes. Unfortunately, they are declining in area coverage globally, and seagrass losses can be attributed to climate change such as sea-level rise, increase in sea surface temperature, and decrease in salinity, as well as human-related activities. The objective of this research is to assess the historical changes in the seagrass habitat and environment of Busuanga, Philippines using time series data available in the Google Earth Engine (GEE) platform. These include satellite data such as MODIS, Landsat 5, 7, and 8, and SeaWIFS. Reanalysis data such as HYCOM was also utilized in this research. Results from HYCOM data show that there has been a 0.0098 °C increase in the sea surface temperature per decade in Busuanga while MODIS data indicates an increase of 0.0045 °C per decade. Moreover, HYCOM data also shows an overall average of 0.76 mm in sea surface elevation anomaly and a decreasing trend in salinity values at 0.0026 psu per decade. Chlorophyll-a concentration has a minimal increase based on results from MODIS and SeaWIFS. Aside from changes in water parameters, changes in the land also affect seagrasses. Forest loss may cause increased siltation in the coastal ecosystem which can lead to seagrass loss. Based on the results of Landsat satellite image processing, there has been forest cover loss in Busuanga with the highest loss occurring in 2013 when super typhoon Yolanda ravaged the island. Lastly, results from the linear spectral unmixing of 778 Landsat images from 1987–2000 show that the average percent cover of seagrasses in Busuanga were declining through the years.



Sign in / Sign up

Export Citation Format

Share Document