Prediction of peat depths using airborne radiometric data: optimization of ground surveys. 

Author(s):  
Ben Marchant

<p>The use of remote sensing data can lead to great efficiencies when mapping soil variables across broad regions. However, remote sensors rarely make direct measurements of the soil property of interest. Instead, an empirical model is required to relate the remote sensing data to ground measurements of the property of interest. We discuss how a survey of ground measurements required to calibrate such a model can be optimized. We make reference to the mapping of peat depth within the Dartmoor National Park (UK) using radiometric potassium data from an airborne survey of the region (http://www.tellusgb.ac.uk/). We expand the standard linear mixed model to accommodate nonlinear relationships between radiometric potassium and peat depths. The attenuation of the radiometric signal is seen to increase with peat depth, but the depth is particularly uncertain when the radiometric signal is small. When a spatial simulated annealing algorithm is used to optimize the locations for a survey of peat depth measurements to minimize the errors in the maps of peat depth upon use of the radiometric data, the complete range of the radiometric data are sampled but ground measurements are particularly focussed where the radiometric signal is small. We see that an optimized survey of 30 ground measurements combined with the radiometric data lead to more accurate maps than can be achieved from interpolation of more than 200 peat depth measurements.</p>

2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2011 ◽  
Vol 17 (6) ◽  
pp. 30-44
Author(s):  
Yu.V. Kostyuchenko ◽  
◽  
M.V. Yushchenko ◽  
I.M. Kopachevskyi ◽  
S. Levynsky ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 2246-2252 ◽  
Author(s):  
Ajay Roy ◽  
◽  
Anjali Jivani ◽  
Bhuvan Parekh ◽  
◽  
...  

Author(s):  
Rupali Dhal ◽  
D. P. Satapathy

The dynamic aspects of the reservoir which are water spread, suspended sediment distribution and concentration requires regular and periodical mapping and monitoring. Sedimentation in a reservoir affects the capacity of the reservoir by affecting both life and dead storages. The life of a reservoir depends on the rate of siltation. The various aspects and behavior of the reservoir sedimentation, like the process of sedimentation in the reservoir, sources of sediments, measures to check the sediment and limitations of space technology have been discussed in this report. Multi satellite remote sensing data provide information on elevation contours in the form of water spread area. Any reduction in reservoir water spread area at a specified elevation corresponding to the date of satellite data is an indication of sediment deposition. Thus the quality of sediment load that is settled down over a period of time can be determined by evaluating the change in the aerial spread of the reservoir at various elevations. Salandi reservoir project work was completed in 1982 and the same is taken as the year of first impounding. The original gross and live storages capacities were 565 MCM& 556.50 MCM respectively. In SRS CWC (2009), they found that live storage capacity of the Salandi reservoir is 518.61 MCM witnessing a loss of 37.89 MCM (i.e. 6.81%) in a period of 27 years.The data obtained through satellite enables us to study the aspects on various scales and at different stages. This report comprises of the use of satellite to obtain data for the years 2009-2013 through remote sensing in the sedimentation study of Salandi reservoir. After analysis of the satellite data in the present study(2017), it is found that live capacity of the reservoir of the Salandi reservoir in 2017 is 524.19MCM witnessing a loss of 32.31 MCM (i.e. 5.80%)in a period of 35 years. This accounts for live capacity loss of 0.16 % per annum since 1982. The trap efficiencies of this reservoir evaluated by using Brown’s, Brune’s and Gill’s methods are 94.03%, 98.01and 99.94% respectively. Thus, the average trap efficiency of the Salandi Reservoir is obtained as 97.32%.


Sign in / Sign up

Export Citation Format

Share Document