Pressures and impact analysis in the Dnipro river basin within Ukraine

Author(s):  
Nataliia Osadcha ◽  
Yurii Nabyvanets ◽  
Volodimir Osadchyi ◽  
Olha Ukhan ◽  
Valeriy Osypov ◽  
...  

<p>The third largest European river Dnipro covers 48% of Ukraine’s territory. An analysis of the main anthropogenic pressures in the Dnipro Basin was first performed according to the requirements of EU WFD.</p><p>Surface water pollution by organic substances and nutrients is principally attributed with point sources, among which the municipal wastewaters play the dominant role. The main load by organic substances and nutrients is caused by the wastewater discharges of big cities with Population Equivalent >100 000; 89% of such cities are located within the sub-basins of Middle Dnipro and Lower Dnipro. </p><p>Point sources form 33% of nitrogen and 61% of phosphorus loads in the Dnipro Basin. Diffuse sources related to agricultural production cause incoming of 29% of nitrogen and 36% of phosphorus. Phosphorus is transported to the water bodies mainly with erosion particles. </p><p>Natural conditions in the River Basin are one of the reasons of nitrogen load significant share (33%). Humus compounds and nitrogen compounds enter into water bodies due to the high bogginess of the Dnipro Basin upper part, especially the Prypiaty Basin. This leads to winter and summer anoxia in the rivers and upper reservoirs and creates prerequisites for eutrophication of the Dnipro cascade reservoirs. Rivers of the Prypiaty sub-basin, Upper Dnipro, and Desna sub-basins are extremely vulnerable to anthropogenic pollution by nutrients and organic substances that generates the increased background of organic compounds and nitrogen in the Dnipro reservoirs cascade. </p><p>The load of the Dnipro Basin surface water by hazardous substances (especially synthetic) still remains insufficiently studied. Currently, information is only available regarding load by heavy metals included to the list of priority substances and some other ones. Water pollution by metals is noted mostly in the Lower Dnipro sub-basin where the most of the metallurgical enterprises are located. </p><p>The high application of pesticides (> 3 kg/ha) in 4 administrative Rayons leads to the appearance of risk conditions for pollution of xenobiotics in 50 surface water bodies (SWBs). </p><p>The Dnipro reservoirs cascade serves as a powerful geochemical barrier causing heavy metals and pesticides deposition in bottom sediments. The highest pollution by metals is noted in the sediments of the Dnipro reservoirs that receive the metallurgy enterprises wastewaters. Probability of significant secondary remobilization is foremost noted for Cadmium. Organochloride pesticides content in the bottom sediments is 2 to 5 times lower than maximal allowable concentration in soil. </p><p>Water abstraction volume is around 22% of the annual flow of 95% probability. The natural flow of the Dnipro is regulated by 6 large reservoirs. Besides, there are 1072 dams and other cross-sectional artificial installations. Natural morphology changes are observed in a large number of rivers within the Dnipro Basin. </p><p>It was found that 56% of the Dnipro Basin SWBs are at risk of failing the “good” ecological status.</p><p>Hydromorphological alterations cause the main anthropogenic pressure in the Dnipro Basin (concerning 45% of the SWBs). Risks from diffuse sources and point sources are observed in 23% and 5% of SWBs, respectively.</p>

Geografie ◽  
2002 ◽  
Vol 107 (1) ◽  
pp. 23-39
Author(s):  
Jakub Langhammer

The non-point pollution sources represent an increasingly important component of the total pollution balance in the country as a result of a gradual reduction of the pollution load from point sources of surface water pollution. As this pollution component cannot be directly measured, various methods of calculation and modelling are used. The author has developed a new methodology for accurate evaluation of the spatial distribution of the pollution load from a river basin under the form of an empirical grid-based GIS model. The article describes this methodology and its application to the Berounka river basin with the aim to evaluate the spatial distribution of the load of the key pollution parameters.


2021 ◽  
Vol 103 (4) ◽  
pp. 6-19
Author(s):  
Zh.S. Mustafayev ◽  
◽  
L.M. Ryskulbekova ◽  

Based on the structural analysis of complex hydrochemical indices for assessing surface water pollution used in various river basins, and the laws of limiting factors, a mathematical model was obtained in the form of the maximum permissible water pollution coefficient (Kпдзi), representing the product of the water content coefficient (Kb) and the maximum water pollution (Kпзi), by based on the laws of nature, principles and properties of natural processes in, together with the water pollution index (ИЗВ), are used for the geoecological assessment of the surface water quality of the Ile River basin on a spatial-temporal scale, taking into account the regulatory criteria for maximum permissible concentrations of pollutants for fishery water bodies, that between the coefficient of the maximum permissible water pollution (Kпдзi) and the water pollution index (ИЗВ) there is a pronounced relationship, described by a logarithmic equation, allowing them to be used to assess the ecological state water bodies. Water quality assessment was carried out for four hydrological sections of the Ile River catchment basin, which showed that water pollution is of a transboundary nature, since at the Dobyn hydrological station, located on the borders of the Republic of Kazakhstan and the People's Republic of China, the water quality is «polluted», and from the Kapshagai reservoir to Lake Balkhash «moderately polluted», where due to the selfcleaning ability of the aquatic ecosystem and the waters coming from the tributaries, there is some improvement in water quality.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 137-144 ◽  
Author(s):  
Josef Hejzlar ◽  
Vojtech Vyhnálek ◽  
Jirí Kopácek ◽  
Jirí Duras

Export and sources of P in the Vltava basin (subbasin of upper Elbe: total area – 28,093 km2; population density – 115 km−2; forests – 35%, farmland – 51%) were evaluated during 1972–1993. Annual export rates of total P from the basin to the river Elbe ranged between 38 and 68 kg km−2 a−1. Reservoirs with hydraulic retention times longer than 15 days were efficient traps for phosphorus retaining 20 to 30% of total P loading into the watercourses. Point sources (municipal wastewaters) were most important throughout the period and their share varied from approximately 60% in wet years to more than 90% in dry years. Export from diffuse sources (dominated by output from farmland) was highly dependent on discharge and fluctuaded between 5 and 40 kg km−2 a−1 in dry and wet years, respectively. Only about 2% of the P input into the basin from the fertilisation of farmland and from the atmospheric deposition was exported to the watercourses.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Joanna Jaskuła ◽  
Mariusz Sojka ◽  
Michał Fiedler ◽  
Rafał Wróżyński

Pollution of river bottom sediments with heavy metals (HMs) has emerged as a main environmental issue related to intensive anthropopressure on the water environment. In this context, the risk of harmful effects of the HMs presence in the bottom sediments of the Warta River, the third longest river in Poland, has been assessed. The concentrations of Cr, Ni, Cu, Zn, Cd, and Pb in the river bottom sediments collected at 24 sample collection stations along the whole river length have been measured and analyzed. Moreover, in the GIS environment, a method predicting variation of HMs concentrations along the whole river length, not at particular sites, has been proposed. Analysis of the Warta River bottom sediment pollution with heavy metals in terms of the indices: the Geoaccumulation Index (Igeo), Enrichment Factor (EF), Pollution Load Index (PLI), and Metal Pollution Index (MPI), has proved that, in 2016, the pollution was heavier than in 2017. Assessment of the potential toxic effects of HMs accumulated in bottom sediments, made on the basis of Threshold Effect Concentration (TEC), Midpoint Effect Concentration (MEC), and Probable Effect Concentration (PEC) values, and the Toxic Risk Index (TRI), has shown that the ecological hazard in 2017 was much lower. Cluster analysis revealed two main groups of sample collection stations at which bottom sediments showed similar chemical properties. Changes in classification of particular sample collection stations into the two groups analyzed over a period of two subsequent years indicated that the main impact on the concentrations of HMs could have their point sources in urbanized areas and river fluvial process.


2012 ◽  
pp. 149-152
Author(s):  
János Fehér

In the European Region agriculture is the second largest water user after power industry cooling water use. As part of the implementation of Water Framework Directive EU Member States prepared their river basin management plans by the end of 2009 or first half of 2010, In these plans impacts of agriculture on water bodies have received attention. The detailed information elaborated in the plans by countries and river basin districts were uploaded into the WFD section of the WISE system. This database provides opportunity for multi-criteria analysis for different water types. The paper discusses the effects of agriculture on hydromorphological pressures and impacts affecting surface water bodies. It was pointed out that among the pressures affecting European surface water bodies the hydromorphological and diffuse pressures represent the highest ratios (Figure 1). Within the hydromorphological pressures affecting classified surface water bodies the ratio of pressures related to agricultural activities is low,it does not exceed 1% at European level. In case of Hungary the agriculture related river management pressures effect about 80% of the surface water bodies, which is much higher than the corresponding European average. The agricultural water abstractions affect about 10% of the Hungarian surface water bodies (Figures 2 and 3). The river and lake water bodies are impacted in significant ratio by nutrient enrichments and organic material enrichments, while in case of river water bodies the impact of organic material enrichments is also significant (Figures 4 and 5).


Sign in / Sign up

Export Citation Format

Share Document