Reef-building oysters record seasonal variations in water mass-properties of tidal basins from the Central Wadden Sea (North Sea)

Author(s):  
Jassin Petersen ◽  
Jürgen Titschack ◽  
Jeroen Groeneveld ◽  
Achim Wehrmann ◽  
Dierk Hebbeln ◽  
...  

<p>Before proxy records can be reliably employed in palaeoclimate research, calibration studies have to be conducted to assess the confidence intervals of the respective proxies. Here, we use shells of the fast growing Pacific oyster <em>Magallana gigas</em> from the Central Wadden Sea, North Sea, a temperate barrier island-backbarrier tidal flat-salt marsh system with large seasonal changes of water mass-properties, for the calibration of geochemical proxies. <em>M. gigas</em> represents a non-native invasive species that rapidly develops oyster reefs. Calcite shells of two specimens from the intertidal and subtidal zones were sampled in high resolution yielding sub-monthly data sets. The time period represented in the shell, based on δ<sup>18</sup>O age modelling, was estimated at 8-10 years and the growth of the shells was restricted from (late) spring to (early) autumn of each year. Mg/Ca, Mn/Ca and Sr/Ca ratios of the intertidal and subtidal specimens show similar seasonal patterns. Mg/Ca and Sr/Ca ratios are investigated as high-resolution sea surface temperature (SST) proxies. Important ontogenetic effects (i.e., increasing time-averaging with increasing age) as well as intra-species variability are discussed as limiting factors for the proxy development. Intertidal Mg/Ca ratios show only a significant correlation to the high-resolution SST record of the Central Wadden Sea when the early ontogenetic stage is considered. Sr/Ca ratios were comparable in terms of absolute values and amplitudes to those of <em>M. gigas</em> in the Northern Wadden Sea, but amplitudes were decreasing with increasing ontogeny. These findings seriously hamper the application of Mg/Ca and Sr/Ca for reliable palaeotemperature reconstructions regardless of ontogenetic stage. The Mn/Ca ratios were investigated as proxy for Mn cycling in tidal basins, where it is interrelated with seasonal changes in primary production. In addition to the generally observed seasonal variability of the Mn/Ca records, the subtidal Mn/Ca is significantly elevated compared to intertidal Mn/Ca. The subtidal Mn/Ca offset likely reflects differences in Mn cycling in tidal settings and could, therefore, serve in the palaeorecord as indicator to differentiate inter- and subtidal habitats in the same embedding sedimentary facies. This habitat effect has to be considered as an important factor besides environmental change when interpreting the high-resolution proxy record of fossil oysters.</p>

2018 ◽  
Vol 163 ◽  
pp. 401-416 ◽  
Author(s):  
Camille de la Vega ◽  
Ulrike Schückel ◽  
Sabine Horn ◽  
Ingrid Kröncke ◽  
Ragnhild Asmus ◽  
...  

1989 ◽  
Vol 43 (3-4) ◽  
pp. 461-477 ◽  
Author(s):  
F. A. Beek ◽  
A. D. Rijnsdorp ◽  
R. Clerck
Keyword(s):  

Author(s):  
Wouter Koch ◽  
Peter Boer ◽  
Johannes IJ. Witte ◽  
Henk W. Van der Veer ◽  
David W. Thieltges

A conspicuous part of the parasite fauna of marine fish are ectoparasites, which attach mainly to the fins or gills. The abundant copepods have received much interest due to their negative effects on hosts. However, for many localities the copepod fauna of fish is still poorly known, and we know little about their temporal stability as long-term observations are largely absent. Our study provides the first inventory of ectoparasitic copepods on fish from the western Wadden Sea (North Sea) based on field data from 1968 and 2010 and additional unpublished notes. In total, 47 copepod parasite species have been recorded on 52 fish host species to date. For two copepod species parasitizing the European flounder (Platichthys flesus), a quantitative comparison of infection levels between 1968 and 2010 was possible. Whereas Acanthochondria cornuta did not show a change in the relationship between host size and infection levels, Lepeophtheirus pectoralis shifted towards the infection of smaller hosts, with higher infection levels in 2010 compared to 1968. These differences probably reflect the biology of the species and the observed decrease in abundance and size of flounders during the last decades. The skin-infecting L. pectoralis can probably compensate for dwindling host abundance by infecting smaller fish and increasing its abundance per given host size. In contrast, the gill cavity inhabiting A. cornuta probably faces a spatial constraint (fixed number of gill arches), thus limiting its abundance and setting a minimum for the host size necessary for infections.


2021 ◽  
Author(s):  
Andrés Martínez

<p><strong>A METHODOLOGY FOR OPTIMIZING MODELING CONFIGURATION IN THE NUMERICAL MODELING OF OIL CONCENTRATIONS IN UNDERWATER BLOWOUTS: A NORTH SEA CASE STUDY</strong></p><p>Andrés Martínez<sup>a,*</sup>, Ana J. Abascal<sup>a</sup>, Andrés García<sup>a</sup>, Beatriz Pérez-Díaz<sup>a</sup>, Germán Aragón<sup>a</sup>, Raúl Medina<sup>a</sup></p><p><sup>a</sup>IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Avda. Isabel Torres, 15, 39011 Santander, Spain</p><p><sup>* </sup>Corresponding author: [email protected]</p><p>Underwater oil and gas blowouts are not easy to repair. It may take months before the well is finally capped, releasing large amounts of oil into the marine environment. In addition, persistent oils (crude oil, fuel oil, etc.) break up and dissipate slowly, so they often reach the shore before the cleanup is completed, affecting vasts extension of seas-oceans, just as posing a major threat to marine organisms.</p><p>On account of the above, numerical modeling of underwater blowouts demands great computing power. High-resolution, long-term data bases of wind-ocean currents are needed to be able to properly model the trajectory of the spill at both regional (open sea) and local level (coastline), just as to account for temporal variability. Moreover, a large number of particles, just as a high-resolution grid, are unavoidable in order to ensure accurate modeling of oil concentrations, of utmost importance in risk assessment, so that threshold concentrations can be established (threshold concentrations tell you what level of exposure to a compound could harm marine organisms).</p><p>In this study, an innovative methodology has been accomplished for the purpose of optimizing modeling configuration: number of particles and grid resolution, in the modeling of an underwater blowout, with a view to accurately represent oil concentrations, especially when threshold concentrations are considered. In doing so, statistical analyses (dimensionality reduction and clustering techniques), just as numerical modeling, have been applied.</p><p>It is composed of the following partial steps: (i) classification of i representative clusters of forcing patterns (based on PCA and K-means algorithms) from long-term wind-ocean current hindcast data bases, so that forcing variability in the study area is accounted for; (ii) definition of j modeling scenarios, based on key blowout parameters (oil type, flow rate, etc.) and modeling configuration (number of particles and grid resolution); (iii) Lagrangian trajectory modeling of the combination of the i clusters of forcing patterns and the j modeling scenarios; (iv) sensitivity analysis of the Lagrangian trajectory model output: oil concentrations,  to modeling configuration; (v) finally, as a result, the optimal modeling configuration, given a certain underwater blowout (its key parameters), is provided.</p><p>It has been applied to a hypothetical underwater blowout in the North Sea, one of the world’s most active seas in terms of offshore oil and gas exploration and production. A 5,000 cubic meter per day-flow rate oil spill, flowing from the well over a 15-day period, has been modeled (assuming a 31-day period of subsequent drift for a 46-day modeling). Moreover, threshold concentrations of 0.1, 0.25, 1 and 10 grams per square meter have been applied in the sensitivity analysis. The findings of this study stress the importance of modeling configuration in accurate modeling of oil concentrations, in particular if lower threshold concentrations are considered.</p>


Sign in / Sign up

Export Citation Format

Share Document