Expanding the spatial coverage of a ground-based station to validate satellite total ozone data; The case of TROPOMI and Athens Dobson

Author(s):  
Costas Varotsos ◽  
Yong Xue ◽  
John Christodoulakis ◽  
George Kouremadas ◽  
Eleni-Fotini Fotaki ◽  
...  

<p>In this work we present the validation results of the daily observations of the Total Ozone Column (TOC) obtained by the TROpospheric Monitoring Instrument (TROPOMI), and the Dobson spectrophotometer No. 118 located in Athens, Greece, (WOUDC Station ID: 293) during the period November 2017 to February 2021. Simultaneous observations of both instruments are used for this validation.</p><p>The increased spatial resolution of TROPOMI observations in relation to the push-broom configuration (non-scanning) of the instrument (swath width of ~2600 km) offers the opportunity to study the spatial analysis of the observed differences in a large area around the ground-based station. By using the ground-based station in Athens we attempt to analyze spatial and temporal behavior of the TOC differences between Dobson and TROPOMI data in an area enclosed by a 500 km radius during the period from August 2019 to February 2021.</p>

2021 ◽  
Vol 13 (21) ◽  
pp. 4404
Author(s):  
Alexander Kokhanovsky ◽  
Simon Gascoin ◽  
Laurent Arnaud ◽  
Ghislain Picard

We proposed a simple algorithm to retrieve the total ozone column and snow properties (spectral albedo and effective light absorption path) using the high spatial resolution single–view MSI/S-2 measurements over Antarctica. In addition, the algorithm allows the retrieval of the snow grain size on a scale of 10–20 m. This algorithm should be useful for the understanding of intra-pixel total ozone and snow albedo variability in complement to satellite observations performed on a much coarser spatial resolution scale (0.3–1 km and even larger spatial scales).


2021 ◽  
Author(s):  
Alexander Kokhanovsky ◽  
Filippo Iodice ◽  
Luca Lelli ◽  
Christian Retscher

<p>The total ozone column (TOC) is retrieved using multiple optical satellite instrumentation (including TOMS, OMI, TROPOMI, GOME, GOME-2, and SCIAMACHY, to name a few). The spatial resolution of total ozone satellite measurements is quite low (e.g., 7x3.5km for TROPOMI, 13x24km for OMI, and 30x60km for SCIAMACHY). In some cases (say, close to the ozone hole boundary) it is of importance to have information on the total ozone at a higher spatial resolution. In this work we propose the use of multiple optical instruments performing the measurements in the ozone Chappuis ozone bands (400-650nm) for the total ozone column determination. This makes it possible to extend the number of instruments, which can be used for the total ozone determination (say, also using current/historic measurements by MODIS/Aqua&Terra, S-GLI/SCOM-C, VIIRS/Suomi-NPP, MSI/S-2, OLCI/S-3, MERIS/ENVISAT). In particular, MERIS and SCIAMACHY have been operated from the same satellite platform and had similar swaths (960km for SCIAMACHY and 1150km for MERIS). This means the method of total ozone retrieval based on combination of SCIAMACHY (30x60km) and MERIS (0.3x0.3km) observations over highly reflective ground (say, in Antarctica, where the ozone hole is located) is of value. The total ozone retrievals using Chappuis ozone bands is based on the fact that the top-of-atmosphere reflectance observed over a highly reflective ground (say, snow) has a minimum in the visible located around 600nm. This feature is due to due to the absorption of light by the atmospheric ozone (Gorshelev et al., 2014). The contribution of both ground and atmospheric light scattering to the top-of-atmosphere (TOA) does not have extrema in the vicinity of 600nm. Therefore, there is a possibility to remove both atmospheric and ground light scattering effects to the TOA reflectance over highly reflective underlying surface and derive the atmospheric transmittance due to the ozone absorption effects, which can be used for the TOC determination. Such a method has been explored using MERIS/ENVISAT (Jolivet et al., 2016) and OLCI/S-3 (Kokhanovsky et al., 2020) in the past. This paper is aimed at further improvement of the technique as applied to OLCI/S-3A,B. We have performed intercomparisons of OLCI TOC retrievals with TOC derived from ground and other satellite (e.g., OMI, TROPOMI, GOME-2) measurements. The TOC retrievals using OLCI have been performed over entire Antarctica allowing the generation of TOC at various spatial resolutions including standard 1x1 degree resolution.</p><p>Gorshelev, V., et al., 2014: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014.</p><p>Jolivet D., et al., 2016: TORMS : total ozone retrieval from MERIS in view of application to Sentinel-3,  Living Planet Symposium, Proceedings of the conference held 9-13 May 2016 in Prague, Czech Republic. Edited by L. Ouwehand. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p.358</p><p>Kokhanovsky, A. A., et al., 2020: Retrieval of total ozone over Antarctica using Sentinel -3 Ocean and Land Colour Instrument, JQSRT, 2020, 251, https://doi.org/10.1016/j.jqsrt.2020.107045.</p><p> </p>


2019 ◽  
Vol 12 (10) ◽  
pp. 5263-5287 ◽  
Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Christophe Lerot ◽  
Klaus-Peter Heue ◽  
...  

Abstract. In October 2017, the Sentinel-5 Precursor (S5P) mission was launched, carrying the TROPOspheric Monitoring Instrument (TROPOMI), which provides a daily global coverage at a spatial resolution as high as 7 km × 3.5 km and is expected to extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995, enhancing our scientific knowledge of atmospheric processes with its unprecedented spatial resolution. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, total ozone remains one of the leading species of interest during this mission. In this work, the TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily ground-based quality-assured Brewer and Dobson TOC measurements deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Additional comparisons to individual Brewer measurements from the Canadian Brewer Network and the European Brewer Network (Eubrewnet) are performed. Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d'Analyse par Observation Zénitale), are used for the validation. The quality of the TROPOMI TOC data is evaluated in terms of the influence of location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. For this purpose, globally distributed ground-based measurements have been utilized as the background truth. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5 % and 2.5 %–4.5 %, respectively. The mean bias that results from the comparisons is well within the S5P product requirements, while the mean standard deviation is very close to those limits, especially considering that the statistics shown here originate both from the satellite and the ground-based measurements. Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known spaceborne sensors, namely, the Ozone Mapping Profiler Suite, on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA v2 TOCs, and the Global Ozone Monitoring Experiment 2 (GOME-2), on board the Metop-A (GOME-2/Metop-A) and Metop-B (GOME-2/Metop-B) satellites. This analysis shows a very good agreement for both TROPOMI products with well-established instruments, with the absolute differences in mean bias and mean standard deviation being below +0.7 % and 1 %, respectively. These results assure the scientific community of the good quality of the TROPOMI TOC products during its first year of operation and enhance the already prevalent expectation that TROPOMI/S5P will play a very significant role in the continuity of ozone monitoring from space.


2020 ◽  
Vol 13 (5) ◽  
pp. 2053
Author(s):  
Mateus Dias Nunes ◽  
Glauber Lopes Mariano ◽  
Marcelo Félix Alonso

O ozônio (O3) representa menos de 1% dos gases da atmosfera terrestre, entretanto, é indispensável para a vida na Terra, devido sua influência no balanço energético do planeta filtrando a Radiação Ultravioleta (RUV) do tipo UV-B, nociva à saúde. O objetivo geral deste trabalho é investigar o impacto da coluna total de ozônio sobre a variabilidade da RUV na América do Sul, utilizando dados diários de RUV e Coluna Total de Ozônio (CTO) do sensor Ozone Monitoring Instrument (OMI)  da Aura/NASA (National Aeronautics and Space Administration). Na análise mensal, o valor médio da coluna total de ozônio para o decênio de 2005 a 2014 apresentou uma maior variabilidade no trimestre SON na região da América do Sul. A Análise de Componentes Principais mostrou que nos meses JJA e SON apresenta-se uma correlação direta entre CTO e RUV. As análises dos casos estudados comprovaram que apenas os baixos níveis de ozônio não são determinantes para os altos valores de RUV. Os meses entre julho e outubro apresentam grandes áreas no da América do Sul com forte correlação inversa apresentando regiões estatisticamente significantes. Os resultados exprimem a relação entre a CTO e RUV que dependente da sazonalidade nas diferentes regiões, entre outros fatores. Spatio-temporal variability of total ozone column and ultraviolet radiation: assessment of relationship in South America A B S T R A C T Ozone (O3) represents less than 1% of the earth's atmosphere gases, however, it is indispensable for life on Earth, due to its influence on the planet's energy balance as well as filtering out harmful UV-B type UVR-B the health. The general objective of this work is to investigate the impact of the total ozone column on UVR variability in South America, using daily Aura/NASA Ozone Monitoring Instrument (OMI) sensor and Total Column Ozone (TOC) data daily. National Aeronautics and Space Administration). In the monthly analysis, the average value of the total ozone column for the decade from 2005 to 2014 showed a greater variability in the SON quarter in the South American region. The Analisys Principals Components pattern showed that in the JJA and SON months, there is a direct correlation between TOC and RUV. Analyzes of the case studies have shown that only low ozone levels are not determinant for high UVR values. The months between July and October present large areas in southern South America with strong inverse correlation showing statistically significant regions. The results express that the relationship between TOC and UVR depends on seasonality and different regions, among other factors. Keywords: Solar Radiation, OMI Sensor, Daily Erythmic Dose


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


1998 ◽  
Vol 22 (11) ◽  
pp. 1501-1504
Author(s):  
A.J.M Piters ◽  
P.F Levelt ◽  
M.A.F Allaart ◽  
H.M Kelder

Sign in / Sign up

Export Citation Format

Share Document