Isolation and characterization of calcifying bacteria from “living rocks”: a possible carbon sink

Author(s):  
Maddalena del Gallo ◽  
Amedeo Mignini ◽  
Giulio Moretti ◽  
Marika Pellegrini ◽  
Paola Cacchio

<p>CO<sub>2</sub> emissions triggered by anthropogenic and natural activities contribute to climate change, one of the current environmental threats of public and scientific concern. At present, microbially-induced biomineralization of CO<sub>2</sub> by calcium carbonate (CaCO<sub>3</sub>) is one of the highly topical study subjects as carbon stabilization process. In the present study we focused our attention on the calcifying bacteria of “living rocks”. The origin of these concretions, composed by a silicate skeleton of quartz and feldspars, merged by massive carbonate concrete, has so far been recognized as abiotic. Within this study we investigated the role of calcifying bacteria in their formation of these concretions and we isolated and characterized the species with CaCO<sub>3</sub> precipitation abilities. Concretions were sampled in Romania (Trovant) and Italy (Sibari and Rome). Samples were first analyzed for their culturable microflora (i.e. isolation, CaCO<sub>3 </sub>precipitation capability and molecular characterization). Then, in vitro regeneration tests were carried out to confirm the contribution of bacteria in the formation of these erratic masses. Moreover, natural samples and bioliths regenerated in vitro were (i) observed and analyzed by scanning electron microscopy (SEM-EDS) and (ii) characterized at molecular level by DNA extraction and 16S rRNA analysis (V3-V4 regions). By isolating and characterizing the culturable microflora, we obtained 19 calcifying isolates, with different morphological, bacteriological and mineral precipitation properties. These evidences have given a first relevant contribution for the definition of the biotic role to the formation of these concretions. These evidences were confirmed by the efficient in vitro regeneration and SEM-EDS analysis. The molecular identification of the isolates and the comparison of the data obtained from the Illumina sequencing with those present in the literature, allowed us to hypothesize the genera that most likely contributed to the formation of these concretions. The results obtained provide a good scientific basis for further studies, which should be directed towards the use of isolates in studies of environmental and socio-economic relevance. Several studies demonstrate that microbially mediated biomineralization has the potential to capture and sequester carbon. Calcium carbonate, is a stable pool of carbon and is an effective sealant to prevent CO<sub>2</sub> release back into the atmosphere.</p>

2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.


2011 ◽  
Vol 77 (17) ◽  
pp. 6069-6075 ◽  
Author(s):  
Eric Galiana ◽  
Antoine Marais ◽  
Catherine Mura ◽  
Benoît Industri ◽  
Gilles Arbiol ◽  
...  

ABSTRACTThe microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogenin vitroand host disease. This approach was applied to a soilborne plant pathogen,Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere ofNicotiana tabacum(the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. AVorticellaspecies acted through a mutualistic interaction withP. parasitica, disseminating pathogenic material by leaving the biofilm. APhomaspecies established an amensal interaction withP. parasitica, strongly suppressing disease by inhibitingP. parasiticagermination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
E. J. Sánchez-Barceló ◽  
M. D. Mediavilla ◽  
D. X. Tan ◽  
R. J. Reiter

The objective of this paper was to analyze the data supporting the possible role of melatonin on bone metabolism and its repercussion in the etiology and treatment of bone pathologies such as the osteoporosis and the adolescent idiopathic scoliosis (AIS). Melatonin may prevent bone degradation and promote bone formation through mechanisms involving both melatonin receptor-mediated and receptor-independent actions. The three principal mechanisms of melatonin effects on bone function could be: (a) the promotion of the osteoblast differentiation and activity; (b) an increase in the osteoprotegerin expression by osteoblasts, thereby preventing the differentiation of osteoclasts; (c) scavenging of free radicals generated by osteoclast activity and responsible for bone resorption. A variety of in vitro and in vivo experimental studies, although with some controversial results, point toward a possible role of melatonin deficits in the etiology of osteoporosis and AIS and open a new field related to the possible therapeutic use of melatonin in these bone diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Bruno Lorusso ◽  
Angela Falco ◽  
Denise Madeddu ◽  
Caterina Frati ◽  
Stefano Cavalli ◽  
...  

Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retainin vitroseveral receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy.


2021 ◽  
Author(s):  
Chen Zhang ◽  
Xueshuai Han ◽  
Jingkun Liu ◽  
Lei Chen ◽  
Ying Lei ◽  
...  

Ex vivo-expanded mesenchymal stem cells (MSCs) have been demonstrated to be a heterogeneous mixture of cells exhibiting varying proliferative, multipotential, and immunomodulatory capacities. However, the exact characteristics of MSCs remain largely unknown. By single-cell RNA sequencing of 61,296 MSCs derived from bone marrow and Wharton's jelly, we revealed five distinct subpopulations. The developmental trajectory of these five MSC subpopulations were mapped, revealing a differentiation path from stem-like active proliferative cells (APCs) to multipotent progenitor cells, followed by the branching into two paths - adipogenesis or osteochondrogenesis - and subsequent differentiation into unipotent prechondrocytes. The stem-like APCs, expressing the perivascular mesodermal progenitor markers CSPG4/MCAM/NES, uniquely exhibited strong proliferation and stemness signatures. Remarkably, the prechondrocyte subpopulation specifically expressed immunomodulatory genes and was able to suppress activated CD3+ T cell proliferation in vitro, supporting the role of this population in immunoregulation. In summary, our analysis mapped the heterogeneous subpopulations of MSCs and identified two subpopulations with potential functions in self-renewal and immunoregulation. Our findings advance the definition of MSCs by identifying the specific functions of its heterogeneous cellular composition, allowing for more specific and effective MSC application through the purification of its functional subpopulations.


CrystEngComm ◽  
2018 ◽  
Vol 20 (27) ◽  
pp. 3905-3916 ◽  
Author(s):  
Jinzhe Du ◽  
Guangrui Xu ◽  
Chuang Liu ◽  
Rongqing Zhang

Phosphorylation of shell matrix proteins is critical for shell formation in vivo and can modulate calcium carbonate formation in vitro.


2014 ◽  
Vol 694 ◽  
pp. 549-553 ◽  
Author(s):  
Yuriy Vladimirovitch Lebedev ◽  
Valery Pavlovitch Anufriev ◽  
Vladimir Vladimirovitch Belov

In the article the multi-criteria approach at optimization of environmental management is considered as a part of the scientific basis of sustainable development of territories. The results of research of theory and practice of forest exploitation optimization in the Central Ural are presented. The basic principles of purpose formulation, of general analysis, of justification of optimization criteria and selection of methods of solving the tasks of environmental management (forest exploitation) optimization are revealed. On the basis of these scientific researches the principles of disclosure of uncertainty of optimum decisions in one-criteria tasks of forest exploitation are formulated; the mechanism of optimization by criterion of minimax risk that allows avoiding big losses of the environmental potential of forests is shown. The principles of definition of an optimum variant of forest exploitation according to reasonable concessions to extreme values of criteria of using the resource potential, preservation of environmental functions and a social role of forests are revealed.


2007 ◽  
Vol 404 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Gary Flom ◽  
Robert H. Behal ◽  
Luke Rosen ◽  
Douglas G. Cole ◽  
Jill L. Johnson

The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.


1993 ◽  
Vol 1 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Jean Bernard

Bioethics has been stimulated by two happenings. Indignation provoked by the behaviour of Hitler's regime against the unfortunate deportees and the splendid progress of biology and medicine. One can distinguish two periods in the history of ethical committees. Firstly a period concerned only with local regional, hospital or university committees and a later period concerned with national committees (the first was created in France in 1983).Three revolutions which pose important ethical questions have changed medicine in the last fifty years:1. A therapeutic revolution with therapeutic trials (well organised trials on healthy volunteers, or comparative trials which are both morally necessary and necessarily immoral).2. Organ transplantation with questions about the donor (dead or living) or the recipient who becomes a chimera.3. Epidemiological enquiries with the difficult question of creating a register.The biological revolution which came later has given man three masteries:1. Developments in birth control, such as the RU of Baulieu, which can terminate pregnancy.2. Artificial insemination ranging from treating male infertility to a matter of convenience.3. In vitro fertilisation leads to the problem of what to do with supernumerary embryos.Genetic developments lead to progress in predicting the predisposition to disease as well as the power to modify the inherited genetic makeup. The invention but not the discovery can be patented. Finally progress in knowledge of the nervous system leads to two important bioethical problems, psychopharmacology and nerve tissue grafts.These difficult questions and the tensions that they have engendered have led ethical committees to formulate the following principles to guide their judgement:1. The definition of a person at the very beginning of life, with the tendency to consider an embryo as a potential person.2. Respect for knowledge depends on two precautions; confining some research to a small number of laboratories and having a moratorium on some new findings.3. Eliminating the financial element from blood transfusions or organ donation.4. The responsibility of the researcher who should deal with the ethical problems created by his or her research as it develops.What is the role of the law in ethics? What legislation can be and what cannot be forecast? How can we develop the teaching of bioethics particularly in higher education, medicine and law? Can we start sufficiently early teaching morality in schools? How do we develop the necessary international arrangements? By increasing meetings? By creating a European bioethics committee? Finding an answer to these questions was the object of a meeting in Madrid in March 1992 of the chairmen of the national ethical committees of Europe.


1995 ◽  
Vol 14 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Richard M. Hoar

There is a pervasive lack of understanding about the definition of a developmental toxicant and the experimental design necessary to differentiate between maternal toxicants and those uniquely, i.e., selectively, hazardous to the conceptus. Thus, the acceptance of the adult-to-developmental (A/D) ratio and its ability to identify those compounds uniquely hazardous to the conceptus has been compromised, as has the extrapolation of hazard across species. The failure to establish a shared understanding is discussed, together with the role of an in vitro screen for determining the A/D ratio. The addition of an environmental exposure factor permitting the extrapolation of hazard assessment across species and the estimation of potential human developmental toxicity is detailed.


Sign in / Sign up

Export Citation Format

Share Document