Identification of the preferred areas for animal burrowing activity with regard to the land cover, topography and soil properties using very high resolution WorldView-2 and LiDAR data

Author(s):  
Paulina Grigusova ◽  
Annegret Larsen ◽  
Alexander Klug ◽  
Diana Kraus ◽  
Peter Chifflard ◽  
...  

<p>Bioturbation is assumed to be coupled with vegetation, soil properties and topography. The soil properties influence the amount of nutrients needed for plant growth and determine the resistance of the soil to the burrowing itself and to the burrow stability. Vegetation provides food and shelter for the animals. At the same time, the burrowing destroys the plant roots while the animal presence and changed vegetation distribution affect soil properties. Additionally, the soil properties and vegetation also depend on topographic features as height, aspect or curvature.</p><p>This relation between the bioturbation, soil properties and topography are to date understudied, in particular how and if the co-dependencies differ between various climate zones. High resolution remote sensing data provide here a sufficient method to study these dependencies as the soil characteristics change rapidly on microscale. However, the application of fused high resolution WorldView-2 data and LiDAR data for the prediction of bioturbation and soil properties are completely missing.</p><p>In our study we used WorldView-2 and LiDAR data with a resolution of 0.5m for a machine learning based prediction of visible indicators of bioturbation activity (number of holes and mounds) and related soil properties. We obtained a land cover classification from the WorldView-2 data and topographic features from the LiDAR data. We then analyzed the relationship between bioturbation, soil properties, land cover and topography in arid, semi-arid and Mediterranean climate zone in Chile.</p><p>For this, we measured the number of holes and mounds created by burrowing animals within 60 plots of 10mx10m randomly dispersed on six hillsides in the three climate zones. On each hillside, 20 soil samples were taken in regular distances from the crest to the bottom of each hillside. The soil samples were analyzed for soil skeleton fraction, above ground skeletal fraction, nine soil texture classes, bulk density, water content, organic carbon, porosity, erodibility and skin factor. We carried out an orographic and topographic correction of the WorldView-2 images and classified the land cover into soil, rocks, cacti, shrub, trees and palms. We calculated several topographic features from the LiDAR data as height, slope, aspect, curvature, surface roughness and flow direction. We then used the WorldView-2 bands, vegetation indices and topographic features to upscale the bioturbation activity and soil properties into the area of 5x5 km at each site using the random forest machine learning algorithm.</p><p>Our results show that the bioturbation activity is best predicted by WorldView-2 data and vegetation indices while the soil properties can be best predicted by topography. The bioturbation activity strongly depends on land cover and vegetation distribution in the Mediterranean climate zone while there is a stronger link of bioturbation activity to topography and soil properties in the arid and semi-arid climate zone.</p>

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1446
Author(s):  
Âlvaro Plaza ◽  
Miguel Castillo

Data on the germination rates of four tree species, natively founded in the Chilean Mediterranean-climate zone, were determined by germination in crop chambers. The obtained data were used to interpolate or extrapolate the time taken for 50% of seeds to germinate in each case. These results are useful for regional native forest research and, in a broad sense, for its use in models to study germination dynamics in Mediterranean-climate zones.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1280 ◽  
Author(s):  
Laura Fragoso-Campón ◽  
Elia Quirós ◽  
Julián Mora ◽  
José Antonio Gutiérrez ◽  
Pablo Durán-Barroso

Mapping land cover with high accuracy has become a reality with the application of current remote sensing techniques. Due to the specific spectral response of the vegetation, soil and vegetation indices are adequate tools to help in the discrimination of land uses. Additionally, the accuracy of satellite imagery classification can be improved using multitemporal series combined with LiDAR data. This datafusion takes advantage of the information provided by LiDAR for the vegetation cover density, and the capability of multispectral data to detect the type of vegetation. The main goal of this study is to analyze the accuracy enhancement in land cover classification of two forested watersheds when using datafusion of annual time series of Sentinel-2 images complemented with low density LiDAR. The obtained results show that overall accuracy is better if LiDAR data is included in the classification. This improvement can be a significant issue in land cover classification of forest watershed due to relationship and influence that vegetation cover has on runoff estimation.


2011 ◽  
Vol 3 (11) ◽  
pp. 2364-2383 ◽  
Author(s):  
Kyle A. Hartfield ◽  
Katheryn I. Landau ◽  
Willem J. D. van Leeuwen

2021 ◽  
Author(s):  
Salem Morsy ◽  
Ahmed Shaker ◽  
Ahmed El-Rabbany

Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood lassifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. Keywords: multispectral LiDAR; land cover; ground filtering; NDVI; radiometric correction


2021 ◽  
Author(s):  
Salem Morsy ◽  
Ahmed Shaker ◽  
Ahmed El-Rabbany

Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood lassifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. Keywords: multispectral LiDAR; land cover; ground filtering; NDVI; radiometric correction


Author(s):  
Naga Madhavi lavanya Gandi

Land cover classification information plays a very important role in various applications. Airborne Light detection and Ranging (LiDAR) data is widely used in remote sensing application for the classification of land cover. The present study presents a Spatial classification method using Terrasoild macros . The data used in this study are a LiDAR point cloud data with the wavelength of green:532nm, near infrared:1064nm and mid-infrared-1550nm and High Resolution RGB data. The classification is carried in TERRASCAN Module with twelve land cover classes. The classification accuracies were assessed using high resolution RGB data. From the results it is concluded that the LiDAR data classification with overall accuracy and kappa coefficient 85.2% and 0.7562.


2020 ◽  
Author(s):  
Junwen Chen ◽  
Chi-Yung Tam ◽  
Steve H.L. Yim ◽  
Meng Cai ◽  
Ran Wang ◽  
...  

<p>A new 10-type urban Local Climate Zone (LCZ) classification with 100-m resolution was developed, following the guidelines of the World Urban Database and Access Portal Tools (WUDAPT) over the Greater Bay Area (GBA). This LCZ dataset was incorporated into the Building Environment Parameterization (BEP)-Building Energy Model (BEM) multi-layer urban canopy scheme used by the Weather Research and Forecasting (WRF) model, with key parameters (such as fraction of impervious surface, building height/width, road width, air conditioning usage) determined from local building morphology and energy consumption patterns. The impacts of using such detailed 10-type LCZ, as compared to using remapped 3-type LCZ and using default WRF 1-type urban land cover were assessed, based on parallel integrations of the WRF system at 1-km resolution for a historical hot-and-polluted event over the GBA. It was found that the model surface temperature, air temperature, humidity and wind speed in the 10-type LCZ run were in closer agreement with in-situ observations, demonstrating the value of detailed urban LCZ data in improving the model performance. Smaller diurnal temperature range and higher nighttime temperature were found in the 10-type LCZ run compared to the 3-type LCZ and 1-type runs. Increased building height in the 10-type LCZ setting also reduces positive bias of wind speed in the lower planetary boundary layer at urban locations. The cold and dry biases over the non-urban areas in the 10-type LCZ run could be further reduced through considering updated land cover, soil type, soil hydraulic/thermal parameters, soil moisture/temperature. Owing to the improvement in capturing the urban meteorology, incorporating more detailed LCZ classification might also improve air-quality simulations. These findings should be relevant to the development of comprehensive, high-resolution earth system models, which are an indispensable tool for mitigation of and adaption to regional environmental and climate changes.</p>


Author(s):  
Ya Chen ◽  
Geoffrey Letchworth ◽  
John White

Low-temperature high-resolution scanning electron microscopy (cryo-HRSEM) has been successfully utilized to image biological macromolecular complexes at nanometer resolution. Recently, imaging of individual viral particles such as reovirus using cryo-HRSEM or simian virus (SIV) using HRSEM, HV-STEM and AFM have been reported. Although conventional electron microscopy (e.g., negative staining, replica, embedding and section), or cryo-TEM technique are widely used in studying of the architectures of viral particles, scanning electron microscopy presents two major advantages. First, secondary electron signal of SEM represents mostly surface topographic features. The topographic details of a biological assembly can be viewed directly and will not be obscured by signals from the opposite surface or from internal structures. Second, SEM may produce high contrast and signal-to-noise ratio images. As a result of this important feature, it is capable of visualizing not only individual virus particles, but also asymmetric or flexible structures. The 2-3 nm resolution obtained using high resolution cryo-SEM made it possible to provide useful surface structural information of macromolecule complexes within cells and tissues. In this study, cryo-HRSEM is utilized to visualize the distribution of glycoproteins of a herpesvirus.


Sign in / Sign up

Export Citation Format

Share Document