scholarly journals Spatial Variability of Near-field Ground Motions from Pseudo-Dynamic Rupture Simulations

Author(s):  
Jayalakshmi Sivasubramonian ◽  
Paul Martin Mai

<p>We analyze the effect of earthquake source parameters on ground-motion variability based on near-field wavefield simulations for large earthquakes. We quantify residuals in simulated ground motion intensities with respect to observed records, the associated variabilities are then quantified with respect to source-to-site distance and azimuth. Additionally, we compute the variabilities due to complexities in rupture models by considering variations in hypocenter location and slip distribution that are implemented a new Pseudo-Dynamic (PD) source parameterization.</p><p>In this study, we consider two past events – the Mw 6.9 Iwate Miyagi Earthquake (2008), Japan, and the Mw 6.5 Imperial Valley Earthquake, California (1979). Assuming for each case a 1D velocity structure, we first generate ensembles of rupture models using the pseudo-dynamic approach of Guatteri et.al (2004), by assuming different hypocenter and asperities locations (Mai and Beroza, 2002, Mai et al., 2005; Thingbaijam and Mai, 2016). In order to efficiently include variations in high-frequency radiation, we adopt a PD parameterization for rupture velocity and rise time distribution in our rupture model generator. Overall, we generate a database of rupture models with 50 scenarios for each source parameterization. Synthetic near-field waveforms (0.1-2.5Hz) are computed out to Joyner-Boore distances Rjb ~ 150km using a discrete-wavenumber finite-element method (Olson et al., 1984). Our results show that ground-motion variability is most sensitive to hypocenter locations on the fault plane. We also find that locations of asperities do not alter waveforms significantly for a given hypocenter, rupture velocity and rise time distribution. We compare the scenario-event simulated ground motions with simulations that use the rupture models from the SRCMOD database (Mai and Thingbaijam, 2014), and find that the PD method is capable of reducing the ground motion variability at high frequencies. The PD models are calibrated by comparing the mean residuals with the residuals from SRCMOD models. We present the variability due to each source parameterization as a function of Joyner-Boore distance and azimuth at different natural period.</p>

2020 ◽  
Vol 92 (1) ◽  
pp. 301-313
Author(s):  
Seok Goo Song ◽  
Mathieu Causse ◽  
Jeff Bayless

Abstract Given the deficiency of recorded strong ground-motion data, it is important to understand the effects of earthquake rupture processes on near-source ground-motion characteristics and to develop physics-based ground-motion simulation methods for advanced seismic hazard assessments. Recently, the interfrequency correlation of ground motions has become an important element of ground-motion predictions. We investigate the effect of pseudodynamic source models on the interfrequency correlation of ground motions by simulating a number of ground-motion waveforms for the 1994 Northridge, California, earthquake, using the Southern California Earthquake Center Broadband Platform. We find that the cross correlation between earthquake source parameters in pseudodynamic source models significantly affects the interfrequency correlation of ground motions in the frequency around 0.5 Hz, whereas its effect is not visible in the other frequency ranges. Our understanding of the effects of earthquake sources on the characteristics of near-source ground motions, particularly the interfrequency correlation, may help develop advanced physics-based ground-motion simulation methods for advanced seismic hazard and risk assessments.


1973 ◽  
Vol 63 (2) ◽  
pp. 599-614 ◽  
Author(s):  
M. E. O'Neill ◽  
J. H. Healy

abstract A simple method of estimating source dimensions and stress drops of small earthquakes is presented. The basic measurement is the time from the first break to the first zero crossing on short-period seismograms. Graphs relating these measurements to rise time as a function of Q and instrument response permit an estimate of earthquake source parameters without the calculation of spectra. Tests on data from Rangely, Colorado, and Hollister, California, indicate that the method gives reasonable results.


1999 ◽  
Vol 89 (4) ◽  
pp. 854-866 ◽  
Author(s):  
John E. Ebel ◽  
Alan L. Kafka

Abstract We have developed a Monte Carlo methodology for the estimation of seismic hazard at a site or across an area. This method uses a multitudinous resampling of an earthquake catalog, perhaps supplemented by parametric models, to construct synthetic earthquake catalogs and then to find earthquake ground motions from which the hazard values are found. Large earthquakes extrapolated from a Gutenberg-Richter recurrence relation and characteristic earthquakes can be included in the analysis. For the ground motion attenuation with distance, the method can use either a set of observed ground motion observations from which estimates are randomly selected, a table of ground motion values as a function of epicentral distance and magnitude, or a parametric ground motion attenuation relation. The method has been tested for sites in New England using an earthquake catalog for the northeastern United States and southeastern Canada, and it yields reasonable ground motions at standard seismic hazard values. This is true both when published ground motion attenuation relations and when a dataset of observed peak acceleration observations are used to compute the ground motion attenuation with distance. The hazard values depend to some extent on the duration of the synthetic catalog and the specific ground motion attenuation used, and the uncertainty in the ground motions increases with decreasing hazard probability. The program gives peak accelerations that are comparable to those of the 1996 U.S. national seismic hazard maps. The method can be adapted to compute seismic hazard for cases where there are temporal or spatial variations in earthquake occurrence rates or source parameters.


2014 ◽  
Vol 17 (11) ◽  
pp. 1623-1638 ◽  
Author(s):  
R. Roy ◽  
P. Thakur ◽  
S. Chakroborty

In the context of performance-based seismic design (PBSD), ground motions are often scaled to certain convenient target spectra derived from probabilistic seismic hazard analysis (PSHA). While Uniform Hazard Spectrum (UHS) is more widely used, Conditional Mean Spectrum (CMS) is recently proposed to be more desirable for scaling of real accelerograms. In this backdrop, a set of near-field and far-field ground motions are spectrally scaled, using wavelets, to both UHS and CMS. Seismic demand of horizontally irregular structures under bi-directional ground motion is assessed under both scaled and seed records in the elastic range. Spectral matching, within limits, of both the horizontal components of real records to a single hazard spectrum is observed to adequately predict the amplification in response due to asymmetry (at least for the records and target spectra relevant to soil class D). Further, such scaling effectively reduces the variability in predicted magnification from one ground motion to other. Dynamic amplification factors recommended in international codes to apply in equivalent static design of asymmetric systems are shown to be deficient.


2019 ◽  
Vol 219 (2) ◽  
pp. 1148-1162
Author(s):  
Jiun-Ting Lin ◽  
Wu-Lung Chang ◽  
Diego Melgar ◽  
Amanda Thomas ◽  
Chi-Yu Chiu

SUMMARY We test the feasibility of GPS-based rapid centroid moment tensor (GPS CMT) methods for Taiwan, one of the most earthquake prone areas in the world. In recent years, Taiwan has become a leading developer of seismometer-based earthquake early warning systems, which have successfully been applied to several large events. The rapid determination of earthquake magnitude and focal mechanism, important for a number of rapid response applications, including tsunami warning, is still challenging because of the limitations of near-field inertial recordings. This instrumental issue can be solved by an entirely different observation system: a GPS network. Taiwan is well posed to take advantage of GPS because in the last decade it has developed a very dense network. Thus, in this research, we explore the suitability of the GPS CMT inversion for Taiwan. We retrospectively investigate six moderate to large (Mw6.0 ∼ 7.0) earthquakes and propose a resolution test for our model, we find that the minimum resolvable earthquake magnitude of this system is ∼Mw5.5 (at 5 km depth). Our tests also suggest that the finite fault complexity, often challenging for the near-field methodology, can be ignored under such good station coverage and thus, can provide a fast and robust solution for large earthquake directly from the near field. Our findings help to understand and quantify how the proposed methodology could be implemented in real time and what its contributions could be to the overall earthquake monitoring system.


2020 ◽  
Vol 110 (4) ◽  
pp. 1506-1516 ◽  
Author(s):  
Susan E. Hough ◽  
Sang-Ho Yun ◽  
Jungkyo Jung ◽  
Eric Thompson ◽  
Grace A. Parker ◽  
...  

ABSTRACT Shaking from the 6 July 2019 Mw 7.1 Ridgecrest, California, mainshock was strongly felt through southern California, but generated relatively minimal structural damage in Ridgecrest. We consider the extent to which a damage proxy map (DPM) generated from satellite-based Synthetic Aperture Radar images can detect minor damage throughout the town of Ridgecrest. The DPM does not, as expected, detect all minor structural damage to individual structures, nor can it distinguish between structural damage and earthquake-related movement that is not consequential. However, the DPM does confirm many instances of minor structural damage to larger structures and groups of smaller structures and in some instances suggests minor structural damage that is not apparent upon visual inspection. Although ambiguous identification of minor damage may not be useful to guide earthquake response, the identification of minor, possibly hidden damage is potentially useful for other purposes. Overall, the DPM confirms that structural damage was commensurate with modified Mercalli intensity no higher than 7 throughout Ridgecrest. We consider both instrumental and intensity data to explore further the distribution of near-field ground motions over the frequency range of engineering concern. Peak ground accelerations and peak ground velocities estimated from “Did You Feel It?” intensity data using the Worden et al. (2012) ground-motion intensity conversion equation (GMICE) are consistent with recorded instrumental data. Both instrumental and estimated mainshock peak accelerations are further consistent with predictions from both the Boore et al. (2014) ground-motion prediction equation (GMPE), but lower than predicted by the Atkinson and Wald (2007) and Atkinson et al. (2014) intensity prediction equations (IPEs). A GMPE such as Boore et al. (2014), which is constrained by a large global dataset, together with a well-constrained GMICE, may thus characterize expected shaking intensities for large earthquakes better than an IPE based on more limited intensity data.


2021 ◽  
Vol 111 (5) ◽  
pp. 2441-2462 ◽  
Author(s):  
Rosemary Fayjaloun ◽  
Mayssa Dabaghi ◽  
Cecile Cornou ◽  
Mathieu Causse ◽  
Yang Lu ◽  
...  

ABSTRACT Lebanon is a densely populated country crossed by major faults. Historical seismicity shows the potential of earthquakes with magnitudes >7, but large earthquakes have never been instrumentally recorded in Lebanon. Here, we propose a method to simulate near-fault broadband ground motions for a potential Mw 7 earthquake on the Yammouneh fault (YF)—the largest branch of the Dead Sea Transform fault that bisects Lebanon from north to south. First, we performed the first 3D tomography study of Lebanon using ambient noise correlation, which showed that Lebanon could be approximated by a 1D velocity structure for low-frequency (LF) ground-motion simulation purposes. Second, we generated suites of kinematic rupture models on the YF, accounting for heterogeneity of the rupture process, and uncertainty of the rupture velocity and hypocenter location. The radiated seismic energy was next propagated in the inferred 1D velocity model to obtain suites of LF ground motions (<1 Hz) at four hypothetical near-fault seismic stations. These LF simulations included the main features of near-fault ground motions, such as the impulsive character of ground velocity due to the rupture directivity or fling-step effects (so-called pulse-like ground motions). Third, to obtain broadband ground motions (up to 10 Hz), we proposed a hybrid technique that combined the simulated LF ground motions with high-frequency (HF) stochastic simulations, which were empirically calibrated using a worldwide database of near-fault recordings. Contrary to other hybrid approaches, in which the LF and HF motions are generally computed independently, the characteristics of stochastic HF ground motions were conditioned on those of LF ground motions (namely on the characteristics of the velocity pulse, if it existed, or on the absence of a pulse). The simulated peak ground accelerations were in agreement with the ones reported in the Next Generation Attenuation-West2 (NGA-West2) database for similar magnitude and distances and with three NGA-West2 ground-motion prediction equations.


Sign in / Sign up

Export Citation Format

Share Document