Amorphous Si and Ca affect microbial community structure in arctic permafrost soils

Author(s):  
Peter Stimmler ◽  
Jörg Schaller

<p>Arctic warming affects the permafrost soils in different ways. Increase soil temperature and thawing of deeper horizons modifies the release of greenhouse gases (GHG) by release of nutrients. A lot of research was done about nutrient cycling of C, N and P, but little is known about the influence of Ca and amorphous Si (ASi) on this elements. To show the potential of this two elements in the Arctic systems, we analysed the effect of ASi and Ca on microbial community structure with next generation sequencing and qPCR. We analyzed fungal and bacterial community structure in two different soils from Greenland after incubation with different levels of ASi and Ca. Microbial community reacted differently in the high Arctic (Peary Land) and low Arctic soil (Disko Island) to changing concentrations of ASi and Ca. We found a significant change with linear correlation from gram-negative to gram-positive bacteria classes with increasing Ca and/or ASi levels. Further, abundance of Ascomycota and Basidiomycota changed. We postulate this changes as an important factor for changed GHG production as potential response to modified nutrient availability.</p>

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e89531 ◽  
Author(s):  
Magdalena K. Stoeva ◽  
Stéphane Aris-Brosou ◽  
John Chételat ◽  
Holger Hintelmann ◽  
Philip Pelletier ◽  
...  

2001 ◽  
Vol 67 (10) ◽  
pp. 4619-4629 ◽  
Author(s):  
Wilfred F. M. Röling ◽  
Boris M. van Breukelen ◽  
Martin Braster ◽  
Bin Lin ◽  
Henk W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


2021 ◽  
Author(s):  
Peter Stimmler ◽  
Anders Priemé ◽  
Bo Elberling ◽  
Mathias Goeckede ◽  
Jörg Schaller

2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Taylor R. Gofstein ◽  
Matthew Perkins ◽  
Jennifer Field ◽  
Mary Beth Leigh

ABSTRACT The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment. IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.


2020 ◽  
Author(s):  
Peter Stimmler

<p>The Arctic permafrost soils are very diverse in regard to parent material, geobiological composition and genesis. There is sparse knowledge about nutrient availability in Arctic soil and it was found that the permafrost layer differs in nutrient availability compared to the active layer. Recently, it was shown that elements like Si, Ca and P are potentially affecting the greenhouse gas from Arctic soil. However, it is not known how those elements are distributed in Arctic soils for a larger dataset. Furthermore, it is unclear whether regional differences in the availability of those elements or a change in availability due to permafrost thaw is changing microbial decomposer community. Therefore, we analyzed 445 soil depth profiles around the Arctic regarding different element availabilities.</p><p>Furthermore, we conducted an incubation experiment to measure the effect of different Si, Ca and P availabilities on the structure of the microbial decomposer community. We found large differences in the availability of Si, Ca, Al, Fe and P in the layers of the panarctic permafrost soils from Canada, Alaska, Russia, Scandinavia, Greenland and Svalbard. There are differences in the distribution of Ca and Si pools over the panarctic permafrost soils. Especially the availability of P is directly linked to the concentration of Ca and Si and the presence of Al and Fe based minerals. With rising temperatures, the thaw depth of the upper horizon may increase and elements stored in deeper layers become potentially mobilized. These processes modify the nutrient availability for microorganisms and by this the production of greenhouse gases like CO<sub>2</sub> and CH<sub>4</sub>.</p><p>The community structure of bacteria and fungi is related to the availability of Ca and Si. With modified availabilities of Si and Ca, we found direct linear correlations in the changes of the microbial structure at the phylum level for Greenlandic soils. These changes depend on the origin of the soil and the original availability of Ca and Si. We found direct links between the share of gram-positive bacteria and the Ca concentration in both soils and the production of greenhouse gases. The availabilities of these elements may be helpful for better predicting greenhouse gases fluxes in the Arctic as well as element transfer to marine systems.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexis M. Walker ◽  
Mary Beth Leigh ◽  
Sarah L. Mincks

The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.


2013 ◽  
Vol 85 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Terrence H. Bell ◽  
Etienne Yergeau ◽  
Dave F. Juck ◽  
Lyle G. Whyte ◽  
Charles W. Greer

Sign in / Sign up

Export Citation Format

Share Document