scholarly journals The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater

2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Taylor R. Gofstein ◽  
Matthew Perkins ◽  
Jennifer Field ◽  
Mary Beth Leigh

ABSTRACT The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment. IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexis M. Walker ◽  
Mary Beth Leigh ◽  
Sarah L. Mincks

The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.


2014 ◽  
Vol 1051 ◽  
pp. 311-316 ◽  
Author(s):  
Xi Mei Luo ◽  
Zhi Lei Gao ◽  
Hui Min Zhang ◽  
An Jun Li ◽  
Hong Kui He ◽  
...  

In recent years, despite the significant improvement of sequencing technologies such as the pyrosequencing, rapid evaluation of microbial community structures remains very difficult because of the abundance and complexity of organisms in almost all natural microbial communities. In this paper, a group of phylum-specific primers were elaborately designed based on a single nucleotide discrimination technology to quantify the main microbial community structure from GuJingGong pit mud samples using the real-time quantitative PCR (qPCR). Specific PCR (polymerase chain reaction) primers targeting a particular group would provide promising sensitivity and more in-depth assessment of microbial communities.


2019 ◽  
Vol 13 (10) ◽  
pp. 1273-1282 ◽  
Author(s):  
Gianluca Galazzo ◽  
Danyta I Tedjo ◽  
Dion S J Wintjens ◽  
Paul H M Savelkoul ◽  
Ad A M Masclee ◽  
...  

Abstract Background Microbial shifts have been associated with disease activity in Crohn’s disease [CD], but findings on specific taxa are inconsistent. This may be due to differences in applied methods and cross-sectional study designs. We prospectively examined the faecal microbiota in adult CD patients with changing or stable disease course over time. Methods Faeces were collected at two time-points from 15 healthy control individuals [HCs], 35 CD patients who were in remission and who maintained remission [RRs], and 22 CD patients during remission and also during subsequent exacerbation [RAs]. The microbial composition was assessed by 16S rRNA [V4] gene sequencing. Results Compared with HCs, patients with CD had a lower microbial richness [p = 0.0002] and diversity [p = 0.005]. Moreover, the microbial community structure of a subset of patients, clustered apart from HCs, was characterized by low microbial diversity and Faecalibacterium abundance. Patients within this cluster did not differ with respect to long-term disease course compared with patients with a ‘healthy-appearing’ microbiota. Over time, microbial richness and diversity did not change in RR versus RA patients. Although the microbial community structure of both RR and RA patients was less stable over time compared with that of HCs, no differences were observed between the patient groups [p = 0.17]; nor was the stability impacted by Montreal classification, medication use, or surgery. Conclusion The altered microbiota composition and stability in CD was neither associated with disease activity nor long-term disease course, questioning its involvement in the development of an exacerbation. The aberrant microbiota composition in a subset of CD patients warrants further exploration of a more microbiota-driven etiology in this group.


1986 ◽  
Vol 32 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Thomas W. Federle ◽  
Robert J. Livingston ◽  
Loretta E. Wolfe ◽  
David C. White

Estuarine soft-bottom sediments in microcosms and the field were compared with regard to microbial community structure. Community structure was determined by analyzing the fatty acids derived from the microbial lipids in the sediments. Fatty acid profiles were compared using a multivariate statistical approach. Experiments were performed using sediments from St. George Sound and Apalachicola Bay, Florida. The community structure of St. George Sound sediments was apparently controlled by epibenthic predators. In Apalachicola Bay, the dominant influences were physical factors related to the flow of the Apalachicola River. In the St. George Sound experiment, microbial communities in the microcosms differed from those in the field after only 2 weeks, and the degree of this difference increased substantially as time progressed. In the Apalachicola Bay experiment, although microbial communities in the microcosms were detectably different from those in the field, the degree of this difference was not large nor did it increase with time. This differential behavior of sediment communities from different sites may be related to the different ecological factors regulating community composition at these sites.


2018 ◽  
Vol 15 (12) ◽  
pp. 3909-3925 ◽  
Author(s):  
Nicholas Bock ◽  
France Van Wambeke ◽  
Moïra Dion ◽  
Solange Duhamel

Abstract. Oligotrophic regions play a central role in global biogeochemical cycles, with microbial communities in these areas representing an important term in global carbon budgets. While the general structure of microbial communities has been well documented in the global ocean, some remote regions such as the western tropical South Pacific (WTSP) remain fundamentally unexplored. Moreover, the biotic and abiotic factors constraining microbial abundances and distribution remain not well resolved. In this study, we quantified the spatial (vertical and horizontal) distribution of major microbial plankton groups along a transect through the WTSP during the austral summer of 2015, capturing important autotrophic and heterotrophic assemblages including cytometrically determined abundances of non-pigmented protists (also called flagellates). Using environmental parameters (e.g., nutrients and light availability) as well as statistical analyses, we estimated the role of bottom–up and top–down controls in constraining the structure of the WTSP microbial communities in biogeochemically distinct regions. At the most general level, we found a “typical tropical structure”, characterized by a shallow mixed layer, a clear deep chlorophyll maximum at all sampling sites, and a deep nitracline. Prochlorococcus was especially abundant along the transect, accounting for 68 ± 10.6 % of depth-integrated phytoplankton biomass. Despite their relatively low abundances, picophytoeukaryotes (PPE) accounted for up to 26 ± 11.6 % of depth-integrated phytoplankton biomass, while Synechococcus accounted for only 6 ± 6.9 %. Our results show that the microbial community structure of the WTSP is typical of highly stratified regions, and underline the significant contribution to total biomass by PPE populations. Strong relationships between N2 fixation rates and plankton abundances demonstrate the central role of N2 fixation in regulating ecosystem processes in the WTSP, while comparative analyses of abundance data suggest microbial community structure to be increasingly regulated by bottom–up processes under nutrient limitation, possibly in response to shifts in abundances of high nucleic acid bacteria (HNA).


2012 ◽  
Vol 58 (9) ◽  
pp. 1135-1151 ◽  
Author(s):  
P.G. Medihala ◽  
J.R. Lawrence ◽  
G.D.W. Swerhone ◽  
D.R. Korber

Relatively little is known regarding the spatial variability of microbial communities in aquifers where well fouling is an issue. In this study 2 water wells were installed in an alluvial aquifer located adjacent to the North Saskatchewan River and an associated piezometer network developed to facilitate the study of microbial community structure, richness, and diversity. Carbon utilization data analysis revealed reduced microbial activity in waters collected close to the wells. Functional PCR and quantitative PCR analysis indicated spatial variability in the potential for iron-, sulphate-, and nitrate-reducing activity at all locations in the aquifer. Denaturing gradient gel electrophoresis analysis of aquifer water samples using principal components analyses indicated that the microbial community composition was spatially variable, and denaturing gradient gel electrophoresis sequence analysis revealed that bacteria belonging to the genera Acidovorax , Rhodobacter , and Sulfuricurvum were common throughout the aquifer. Shannon’s richness (H′) and Pielou’s evenness (J′) indices revealed a varied microbial diversity (H′ = 1.488–2.274) and an even distribution of microbial communities within the aquifer (J′ = 0.811–0.917). Overall, these analyses revealed that the aquifer’s microbial community varied spatially in terms of composition, richness, and metabolic activity. Such information may facilitate the diagnosis, prevention, and management of fouling.


2001 ◽  
Vol 67 (10) ◽  
pp. 4619-4629 ◽  
Author(s):  
Wilfred F. M. Röling ◽  
Boris M. van Breukelen ◽  
Martin Braster ◽  
Bin Lin ◽  
Henk W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


Author(s):  
Lanying Ma ◽  
Fernando Igne Rocha ◽  
Jaejin Lee ◽  
Jinlyung Choi ◽  
Mauricio Tejera ◽  
...  

Yield of the perennial grass Miscanthus × giganteus has shown an inconsistent and unpredictable response to nitrogen (N) fertilizer, yet fertilization underpins the crop’s environmental and economic sustainability. The interactions among soil microbial communities, N availability, and M. × giganteus and management may explain changes in plant productivity. In this study, soil samples from different stand ages of M. × giganteus in a replicated chronosequence field trial were used to investigate the effects of stand age and N fertilizer rates on microbial community structure. We hypothesized that there is a definable M. × giganteus soil microbiome and that this community varies significantly with stand age and fertilization. Our results showed that the main phyla in soil microbial communities, regardless of plant age, are similar but microbial community structures are significantly different. The variation in observed microbial communities generally decreases in older stand ages. The amount of N fertilizer applied also affected the microbial community structure associated with different aged M. × giganteus. Specifically, the relative abundance of Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Acidobacteria (Subgroup Gp1) increased shortly after fertilization and were more associated with younger M. × giganteus. Further, our results show a significant relationship between bacterial alpha diversity and fertilization rates and that this response is also impacted by stand age. Overall, our results emphasize linkages between microbial community structure, plant age, and fertilization in M. × giganteus.


2020 ◽  
Author(s):  
Ruth Schmidt ◽  
Xiao-Bo Wang ◽  
Paolina Garbeva ◽  
Étienne Yergeau

AbstractNitrapyrin is one of the most common nitrification inhibitors that are used to retain N in the ammonia form in soil to improve crop yields and quality. Whereas the inhibitory effect of nitrapyrin is supposedly specific to ammonia oxidizers, in view of the keystone role of this group in soils, nitrapyrin could have far-reaching impacts. Here, we tested the hypothesis that nitrapyrin leads to large shifts in soil microbial community structure, composition, diversity and functions, beyond its effect on ammonia-oxidizers. To test this hypothesis, we set-up a field experiment where wheat (Triticum aestivum cv. AC Walton) was fertilized with ammonium nitrate (NH4NO3) and supplemented or not with nitrapyrin. Rhizosphere and bulk soils were sampled twice, DNA was extracted, the 16S rRNA gene and ITS region were amplified and sequenced to follow shifts in archaeal, bacterial and fungal community structure, composition and diversity. To assess microbial functions, several genes involved in the nitrogen cycle were quantified by real-time qPCR and volatile organic compounds (VOCs) were trapped in the rhizosphere at the moment of sampling. As expected, sampling date and plant compartment had overwhelming effects on the microbial communities. However, within these strong effects, we found statistically significant effects of nitrapyrin on the relative abundance of Thaumarchaeota, Proteobacteria, Nitrospirae and Basidiomycota, and on several genera. Nitrapyrin also significantly affected bacterial and fungal community structure, and the abundance of all the N-cycle gene tested, but always in interaction with sampling date. In contrast, nitrapyrin had no significant effect on the emission of VOCs, where only sampling date significantly influenced the profiles observed. Our results point out far-reaching effects of nitrapyrin on soil and plant associated microbial communities, well beyond its predicted direct effect on ammonia-oxidizers. In the longer term, these shifts might counteract the positive effect of nitrapyrin on crop nutrition and greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document