scholarly journals Investigating the effect of land-use change on the heat load within two Austrian cities

2021 ◽  
Author(s):  
Robert Goler ◽  
Maja Žuvela-Aloise ◽  
Sandro Oswald ◽  
Brigitta Holllósi ◽  
Claudia Hahn ◽  
...  

<p>As the majority of the population live in cities, it is important to understand the urban climate and how it can change in the future. Accordingly, the ACRP-funded project LUCRETIA investigates how land use and land cover determine local climate characteristics within cities in Austria. </p><p>Historical land use data has been obtained for Graz and Vienna for a number of years and used as input into the microscale urban climate model MUKLIMO_3 to simulate both cities in conditions representing a typical summer day. In conjunction with the cuboid method, climate indices such as the average number of summer and hot days per year have been calculated to establish how the heat load changes from one year to another. Differences in the heat load have been related to changes in the land use focusing on (i) the change that occurs in situ and (ii) the change that occurs in the neighbourhood. <br> <br>It is shown that land use categories can be ordered according to their heat load, with categories containing larger amounts of greenery generally having lower heat loads. With the land use categories sorted in such a way, it enables a relatively quick assessment to be made of the effect of replacing one land use category with another, without having to employ expensive modelling tools. Furthermore, it is shown that land-use changes not only affect the heat load of the changed area in situ, but also the neighbourhood around where the change was made. This demonstrates that land-use changes may have a broader spatial impact than initially anticipated. The results from this study can serve as guidance for city planners regarding future land use and land cover changes.</p>

2020 ◽  
Vol 54 (2) ◽  
pp. 19-27 ◽  
Author(s):  
János Unger ◽  
Nóra Skarbit ◽  
Tamás Gál

In this modeling study the recent and future daily and evening thermal climate of a Central-European city (Szeged, Hungary) was investigated in terms of heat load modification by applying MUKLIMO_3 model to project daily and evening climate indices. For surface parameterization the Local Climate Zone (LCZ) scheme was used. The investigation encompassed three climatological time periods (1981–2010, 2021–2050 and 2071–2100) and two emission scenarios for future climate (RCP4.5 and RCP8.5). Our results show that highest index values appear in the city centre and stretch to the NW direction (LCZs 2, 3 and 8) and they decrease towards to the vegetated rural surfaces (mainly LCZ D). That is, the values depend on the zone types and there are more days towards to the densely built-up LCZs. Also, a general temporal change can be detected as the index patterns show the substantial increasing tendency for both indices towards the end of this century. This temporal change suggests a two-way conclusion: first, the increasing number of hot days means a strongly deteriorating change of unfavourable thermal conditions, and second, the change in the number of the evening index provides more opportunities for regeneration and leisure-time activities outdoors in the already thermally less stressful evening hours for the urban inhabitants. This study gives very illustrative examples on the expected climate changes during this century and these examples show that there are several sides to these changes in urban environments. Furthermore, they clearly prove that global or regional scale climate predictions without urban climate interactions do not have enough detailed information.


2021 ◽  
Vol 55 (4) ◽  
pp. 27-71
Author(s):  
Ilona Bárány Kevei ◽  
Zoltán Zboray ◽  
Márton Kiss

In this study the changes in the nighttime heat load in Carpathian Basin cities during the 21st century were examined. To quantify the heat load, the tropical night climate index was used. The MUKLIMO_3 local scale climate model was used to describe the urban processes and the land use classes were defined by the local climate zones. The expected change was examined over three periods: the 1981–2010 was taken as reference period using the Carpatclim database and the 2021–2050 and 2071–2100 future periods using EURO-CORDEX regional model simulation data for two scenarios (RCP4.5 and RCP8.5). To combine the detailed spatial resolution and the long time series, a downscaling method was applied. Our results show that spectacular changes could be in the number of tropical nights during the 21st century and the increasing effect of the urban landform is obvious. In the near future, a slight increase can be expected in the number of tropical nights, which magnitude varies from city to city and there is no major difference between the scenarios. However, at the end of the century the results of the two scenarios differ: the values can be 15-25 nights in case of RCP4.5 and 30-50 nights in case of RCP8.5. The results show that dwellers could be exposed to high heat load in the future, as the combined effect of climate change and urban climate, thus developing various mitigation and adaptation strategies is crucial.


2017 ◽  
Vol 50 (2) ◽  
pp. 1062
Author(s):  
K. Velikou ◽  
K. Tolika ◽  
Ch. Anagnostopoulou

A parameter that affects significantly the local, regional and global climate system is land cover and the changes that may occur to it. During winter season, heavy precipitation assists vegetation growth of Mediterranean forests and woodlands, whereas during summer, absence of precipitation and severe heat waves result to arid and semiarid vegetation. For that reason, it was quite interesting to track the changes that may occur in the climate of the Mediterranean region due to land cover/land use changes on regional climate over the Mediterranean region. The main objective of the study is the assessment of the impacts of land cover/land use changes on regional climate over the Mediterranean region. The examined regional climate model used in the study is RegCM4.4.5. Its spatial resolution is 25x25km and different simulations were performed with changes in land cover/land use for the time period 1981-1990. The different simulated data were compared in order to examine the modifications that occur from land cover/land use changes in evapotranspiration and surface albedo to direct and diffuse radiation in the domain of study.


2020 ◽  
Author(s):  
Oscar Brousse ◽  
Jonas Van de Walle ◽  
Lien Arnalsteen ◽  
Matthias Demuzere ◽  
Wim Thiery ◽  
...  

<p>Local Climate Zones (LCZ) have now been widely accepted and used by the urban climate community (Ching et al., 2018). However, their use over Sub-Saharan Africa has still been limited because of data scarcity in the region. Brousse et al. (2019, 2020) demonstrated the added value of applying spatially variant urban canyon parameters derived from LCZ in the urban climate model TERRA_URB – embedded in the COSMO-CLM model. Despite its promising results, thermal and morphological parameters extracted out of the ranges proposed by Stewart and Oke (2012) are mostly derived from Western cities. Hence, uncertainties related to the use of unascertained urban forms and functions of African cities for urban climate modelling have not yet been evaluated.</p><p>To quantify the sensitivity of the model to more representative urban canopy parameters of African cities, this study sets up a methodology for: (i) obtaining from in situ measurements archetypal parameters of LCZ classes for Kampala (Uganda); and (ii) simulating the potential effect of the newly defined urban structure on the local climate.</p><p>In situ data were obtained during field work held in the summer months of 2018. A representative sample of 1300 measurement points was selected throughout the city of Kampala, for which both quantitative (road width, distance between houses, heights of buildings) and qualitatively estimated (vegetation fraction, road-wall-roof material) variables were collected.  These variables enabled the development of an updated LCZ map of the city of Kampala.</p><p>To evaluate the model’s sensitivity to the new spatially explicit urban morphological and thermal parameters, this new information was fed into the TERRA_URB scheme at a horizontal resolution of 1 km for a 3-months period (December 2017 – February 2018). The run was nested within a 12 km simulation forced by ERA-Interim reanalysis data. Results show tangible effects of the updated parameters on the 2-meter air temperature, land surface temperature and surface energy balance components. Still, no major improvements in model skill compared to the default LCZ framework proposed by Brousse et al. (2020) were found. [1] [WT2] This study is among the first studies to test the sensitivity of an urban climate model to more realistic urban parameters in Africa and aims at triggering more research to be done in the area with a variety of urban climate models.</p>


2012 ◽  
Vol 7 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Wijitkosum

Soil erosion has been considered as the primary cause of soil degradation since soil erosion leads to the loss of topsoil and soil organic matters which are essential for the growing of plants. Land use, which relates to land cover, is one of the influential factors that affect soil erosion. In this study, impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand, were investigated by applying remote sensing technique, geographical information system (GIS) and the Universal Soil Loss Equation (USLE). The study results revealed that land use changes in terms of area size and pattern influenced the soil erosion risk in Pa Deng in the 1990–2010 period. The area with smaller land cover obviously showed the high risk of soil erosion than the larger land cover did.


2018 ◽  
Vol 10 (10) ◽  
pp. 3421 ◽  
Author(s):  
Rahel Hamad ◽  
Heiko Balzter ◽  
Kamal Kolo

Multi-temporal Landsat images from Landsat 5 Thematic Mapper (TM) acquired in 1993, 1998, 2003 and 2008 and Landsat 8 Operational Land Imager (OLI) from 2017, are used for analysing and predicting the spatio-temporal distributions of land use/land cover (LULC) categories in the Halgurd-Sakran Core Zone (HSCZ) of the National Park in the Kurdistan region of Iraq. The aim of this article was to explore the LULC dynamics in the HSCZ to assess where LULC changes are expected to occur under two different business-as-usual (BAU) assumptions. Two scenarios have been assumed in the present study. The first scenario, addresses the BAU assumption to show what would happen if the past trend in 1993–1998–2003 has continued until 2023 under continuing the United Nations (UN) sanctions against Iraq and particularly Kurdistan region, which extended from 1990 to 2003. Whereas, the second scenario represents the BAU assumption to show what would happen if the past trend in 2003–2008–2017 has to continue until 2023, viz. after the end of UN sanctions. Future land use changes are simulated to the year 2023 using a Cellular Automata (CA)-Markov chain model under two different scenarios (Iraq under siege and Iraq after siege). Four LULC classes were classified from Landsat using Random Forest (RF). Their accuracy was evaluated using κ and overall accuracy. The CA-Markov chain method in TerrSet is applied based on the past trends of the land use changes from 1993 to 1998 for the first scenario and from 2003 to 2008 for the second scenario. Based on this model, predicted land use maps for the 2023 are generated. Changes between two BAU scenarios under two different conditions have been quantitatively as well as spatially analysed. Overall, the results suggest a trend towards stable and homogeneous areas in the next 6 years as shown in the second scenario. This situation will have positive implication on the park.


2008 ◽  
Vol 12 (1) ◽  
pp. 159-175 ◽  
Author(s):  
P. J. Ward ◽  
H. Renssen ◽  
J. C. J. H. Aerts ◽  
R. T. van Balen ◽  
J. Vandenberghe

Abstract. In recent years the frequency of high-flow events on the Meuse (northwest Europe) has been relatively great, and flooding has become a major research theme. To date, research has focused on observed discharge records of the last century and simulations of the coming century. However, it is difficult to delineate changes caused by human activities (land use change and greenhouse gas emissions) and natural fluctuations on these timescales. To address this problem we coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) to simulate daily Meuse discharge in two time-slices: 4000–3000 BP (natural situation), and 1000–2000 AD (includes anthropogenic influence). For 4000–3000 BP the basin is assumed to be almost fully forested; for 1000–2000 AD we reconstructed land use based on historical sources. For 1000–2000 AD the simulated mean annual discharge (260.9 m3 s−1) is significantly higher than for 4000–3000 BP (244.8 m3 s−1), and the frequency of large high-flow events (discharge >3000 m3 s−1) is higher (recurrence time decreases from 77 to 65 years). On a millennial timescale almost all of this increase can be ascribed to land use changes (especially deforestation); the effects of climatic change are insignificant. For the 20th Century, the simulated mean discharge (270.0 m3 s−1) is higher than in any other century studied, and is ca. 2.5% higher than in the 19th Century (despite an increase in evapotranspiration). Furthermore, the recurrence time of large high-flow events is almost twice as short as under natural conditions (recurrence time decreases from 77 to 40 years). On this timescale climate change (strong increase in annual and winter precipitation) overwhelmed land use change as the dominant forcing mechanism.


Sign in / Sign up

Export Citation Format

Share Document