scholarly journals Characterizing Large-Scale Circulations Driving Extreme Precipitation in the Northern French Alps

2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

<p>Extreme precipitation in the Northern French Alps are mainly associated with large-scale circulations (LSCs) bringing moist air from the Atlantic Ocean and the Mediterranean Sea - two atmospheric influences that are very frequent in the climatology. In this work, we investigate what characterizes the Atlantic/Mediterranean circulations driving extreme precipitation in the Northern French Alps in comparison to "random" Atlantic/Mediterranean circulations. We focus on extreme 3-day precipitation over two medium size neighboring catchments from 1950 to 2017. Atlantic and Mediterranean circulations are identified using an existing weather pattern classification established for Southern France. Every single LSC is characterized using three atmospheric descriptors based on analogy in geopotential shapes at 500hPa over Western Europe that were introduced in previous works. They are i) the celerity, characterizing the stationary nature of a geopotential shape, and ii) the singularity and relative singularity, characterizing the resemblance of a geopotential shape to its analogs, in other words the way this geopotential shape is closely reproduced in the climatology. We add to these analogy-based descriptors a new (non analogy) descriptor accounting for the strength of the low and high pressure systems. We show that Atlantic/Mediterranean circulations driving extreme 3-day precipitation in the Northern French Alps are the Atlantic/Mediterranean circulations featuring the strongest centers of action as well as the most stationary and the most reproducible geopotential shapes - characteristics that are rare for both atmospheric influences. In the Atlantic case, these characteristics appear to be even more pronounced and rare with regard to the whole climatology, pointing LSC as an important driver of extreme precipitation. In the Mediterranean case, these characteristics appear to be more random with regard to the whole climatology, pointing a more balanced contribution between specific LSC and humidity in driving extreme precipitation.</p>

2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

<p>This work analyses the link between Western Europe large-scale circulation and precipitation variability in the Northern French Alps from 1950 to 2017. We consider simple descriptors characterizing the daily 500hPa geopotential height fields. They are the Maximum Pressure Difference - representing the range of geopotential heights over Western Europe -, and the singularity - representing the mean distance between a geopotential shape and its closest analogs, i.e. the way this geopotential shape is reproduced in the climatology. These descriptors are compared to the occurrence of different atmospheric influences - Atlantic, Mediterranean, Northeast, Anticyclonic - and to the leading mode of large-scale circulation variability over Europe - the North Atlantic Oscillation (NAO) - for explaining precipitation variability in the Isère River catchment from one day to 10 years. We show that the Maximum Pressure Difference and the singularity of geopotential shapes explain a significant part of precipitation variability in the Northern French Alps from 10 days to 10 years, especially in winter (correlation values of 0.7). These descriptors provide much better performance than NAO and the same performance as the occurrence of the Atlantic influence, which is the best performing atmospheric influence. This means that simple characteristics of large-scale circulation - that are easy to implement - provide as much information as weather pattern classification to explain precipitation variability over a medium size mountainous catchment. Furthermore, we show that NAO does not drive the pressure gradient in a domain spreading from the Iberic Peninsula to Southern Great Britain and weakly explains precipitation variability in the Northern French Alps.</p>


2021 ◽  
Author(s):  
Juliette Blanchet ◽  
Antoine Blanc ◽  
Jean-Dominique Creutin

<p>We analyze recent trends in extreme precipitation in the Southwestern Alps and link these trends to changes in the atmospheric influences triggering extremes. We consider a high-resolution precipitation dataset of 1x1 km2 for the period 1958-2017. A robust method of trend estimation is considered, based on nonstationary extreme value distribution and a homogeneous neighborhood approach. The results show contrasting extreme precipitation trends depending on the season. Excluding autumn, the significant trends are mostly negative in the Mediterranean area, while the French Alps show more contrasted trends, in particular in winter with significant increasing extremes in the Western and Southern French Alps and decreasing extremes in the Northern French Alps and Swiss Valais. In autumn, most of Southern France shows significant increasing trends, with up to 100% increase in the 20-year return level between 1958 and 2017, while the Northern French Alps show decreasing extremes.<br>By comparing these trends to changes in the occurrence of the dominant weather patterns triggering the extremes, we show that part of the significant changes in extremes can be explained by changes in the dominant influences, particularly in the Mediterranean influenced region. We also show that part of the trends in extremes are explained by a shift in the seasonality of maxima. </p>


2020 ◽  
Author(s):  
Nikolaos Mastrantonas ◽  
Linus Magnusson ◽  
Florian Pappenberger ◽  
Jörg Matschullat

<p>The Mediterranean region is an area with half a billion population, about 10 percent contribution to the world’s GDP, and locations of global natural, historical and cultural significance. In this context, natural hazards in the area have the potential for severe negative impacts on society, economy, and environment. </p><p>Some of the most frequent and devastating natural hazards that affect the Mediterranean relate to extreme precipitation events causing flash floods and landslides. Thus, given their adverse consequences, it is of immense importance to better understand their statistical characteristics and connection to large-scale atmospheric patterns. Such advances can substantially support the accurate and early identification of these extreme events, improve early warning systems, and contribute to mitigating related risks. </p><p>This work focuses on the characteristics and spatiotemporal variability of extreme precipitation events of large spatial coverage across the Mediterranean region. The study uses the ERA5 dataset, the latest, state of the art, reanalysis dataset from Copernicus/ECMWF. Initially, exploratory analysis is performed to assess the different characteristics at various subdomains within the study area. Furthermore, composite analysis is used to understand the connection of extreme events with large-scale atmospheric patterns. Finally, the Empirical Orthogonal Function (EOF) analysis is implemented to quantify the importance of weather regimes with respect to the frequency of extreme precipitation events. </p><p>Preliminary results indicate that there is a spatial division in the occurrence of identified events. Winter and autumn are the seasons of the highest frequency of extreme precipitation for the east and west Mediterranean respectively. Troughs and cut-off lows in the lower and middle-level troposphere have a strong association with such extreme events, and the effect is modulated by other parameters, such as local orography. Results of this work are in accordance with previous studies in the region and provide information that can be utilized by future research for improving the predictability of such events in the medium- and extended-range forecasts. </p><p>This work is part of the Climate Advanced Forecasting of sub-seasonal Extremes (CAFE) project. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813844.</p>


2021 ◽  
Author(s):  
Nikolaos Mastrantonas ◽  
Linus Magnusson ◽  
Florian Pappenberger ◽  
Jörg Matschullat

<p>The Mediterranean region frequently experiences extreme precipitation events with devastating consequences for the affected societies, economies, and environment. Being able to provide reliable and skillful predictions of such events is crucial for mitigating their adverse impacts and related risks. One important part of the risk mitigation chain is the sub-seasonal predictability of such extremes, with information provided at such timescales supporting a range of actions, as for example warn decision-makers, and preposition materials and equipment.</p><p>This work focuses on the predictability of large-scale atmospheric flow patterns connected to extreme precipitation events in the Mediterranean. Previous research has identified strong connections between localized extremes and large-scale patterns. This is promising to provide useful information at sub-seasonal timescales. For such lead times, the Numerical Weather Prediction models are more skillful in predicting large-scale patterns than localized extremes. Here, we analyze the usefulness of these connections at sub-seasonal timescales by using the ECMWF extended-range forecasts. We aim at quantifying related benefits for the different areas in the Mediterranean region and providing insights that are of interest to the operational community.</p><p>Initial results suggest that the ECMWF forecasts provide skillful information in the predictability of large-scale patterns up to about 15 days lead time.</p><p> </p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.3687c29b370068376801161/sdaolpUECMynit/12UGE&app=m&a=0&c=49e65b5908090e0787f0f7f4f8930219&ct=x&pn=gnp.elif&d=1" alt=""></p><p>Large-scale patterns over the Mediterranean based on anomalies of sea level pressure (color shades) and geopotential at 500 hPa (contours) (Figure adapted from Mastrantonas et al, 2020)</p>


2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

<p>This work analyses the link between Western Europe large-scale circulation and precipitation variability in the Northern French Alps from 1950 to 2017. We consider simple descriptors characterizing the daily 500hPa geopotential height fields. They are the Maximum Pressure Difference - representing the range of geopotential heights over Western Europe -, and the singularity - representing the mean distance between a geopotential shape and its closest analogs, i.e. the way this geopotential shape is reproduced in the climatology. These descriptors are compared to the occurrence of different atmospheric influences - Atlantic, Mediterranean, Northeast, Anticyclonic - and to the leading mode of large-scale circulation variability over Europe - the North Atlantic Oscillation (NAO) - for explaining precipitation variability in the Isère River catchment from one day to 10 years. We show that the Maximum Pressure Difference and the singularity of geopotential shapes explain a significant part of precipitation variability in the Northern French Alps from 10 days to 10 years, especially in winter (correlation values of 0.7). These descriptors provide much better performance than NAO and the same performance as the occurrence of the Atlantic influence, which is the best performing atmospheric influence. This means that simple characteristics of large-scale circulation - that are easy to implement - provide as much information as weather pattern classification to explain precipitation variability in the Northern French Alps.</p>


2020 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

<p><span>Large-scale circulations (LSCs) explain a significant part of Alpine precipitations. Characterizing circulations triggering heavy precipitation is usually done using weather-type classifications. A different characterization is implemented here, based on analogy using the atmospheric descriptors proposed in Blanchet et al 2018, 2019. These descriptors are both related to the dynamics of LSC and to their relative position in the atmospheric space. </span><span>This work is applied to the Isère river catchment for the 1950-2011 period, considering a 3-</span><span>day time step. The 500 hPa and 1000 hPa geopotential heights covering part of the western Europe are used separately to represent LSC. Two analogy criteria are investigated for constructing the atmospheric descriptors, namely TWS and RMSE.</span></p><p>Our results reveal that LSCs triggering heavy precipitation amounts correspond to strong geostrophic wind with quasi constant direction during the three days, corresponding to blocking situations in altitude. Moreover, those patterns of circulation are among the least singulars, and they show the highest degree of clustering in the atmospheric space. We interpret the latest results by the fact that heavy precipitation LSCs feature twin circulation patterns. In addition, the 500 hPa geopotential height appears to discriminate better heavy precipitation situations than the 1000 hPa one. Finally, our work points out the benefit of a combined use of TWS and RMSE. TWS gives information about the direction of geostrophic wind, while RMSE -combined with TWS- informs about its strength.</p><p>References:</p><p>Blanchet, J., Stalla, S., and Creutin, J.-D. (2018). Analogy of multi-day sequences of atmospheric circulation favoring large rainfall accumulation over the French Alps. Atmospheric Science Letters.</p><p>Blanchet, J., Creutin, J-D. <span>(2019). Modelling rainfall accumulations over several days in the French Alps using low-dimensional atmospheric predictors based on analogy. Journal of Applied Meteorology and Climatology.</span></p>


Author(s):  
Ron Harris

Before the seventeenth century, trade across Eurasia was mostly conducted in short segments along the Silk Route and Indian Ocean. Business was organized in family firms, merchant networks, and state-owned enterprises, and dominated by Chinese, Indian, and Arabic traders. However, around 1600 the first two joint-stock corporations, the English and Dutch East India Companies, were established. This book tells the story of overland and maritime trade without Europeans, of European Cape Route trade without corporations, and of how new, large-scale, and impersonal organizations arose in Europe to control long-distance trade for more than three centuries. It shows that by 1700, the scene and methods for global trade had dramatically changed: Dutch and English merchants shepherded goods directly from China and India to northwestern Europe. To understand this transformation, the book compares the organizational forms used in four major regions: China, India, the Middle East, and Western Europe. The English and Dutch were the last to leap into Eurasian trade, and they innovated in order to compete. They raised capital from passive investors through impersonal stock markets and their joint-stock corporations deployed more capital, ships, and agents to deliver goods from their origins to consumers. The book explores the history behind a cornerstone of the modern economy, and how this organizational revolution contributed to the formation of global trade and the creation of the business corporation as a key factor in Europe's economic rise.


Sign in / Sign up

Export Citation Format

Share Document