On the role of orbital migration in the early phases of the evolution of planetary systems

2020 ◽  
Author(s):  
Zijia Cui ◽  
John Papaloizou ◽  
Ewa Szuszkiewicz

<p class="western" lang="en-GB" align="justify">Past, present and forthcoming space missions (e.g. Kepler/K2, TESS, CHEOPS, JWST, PLATO, ARIEL) and ground-based observational facilities (e.g. VLT, VLTI, ALMA) were, are and will be the sources of the high quality data necessary to unveil the properties of the planetary systems. Thanks to them the recent enormous increase in number of known planets gives a unique opportunity to study the processes responsible for planet formation and evolution in more detail. The observed properties of numerous planets allow for the robust constraints to be put on planet formation models. Both ground and space-based surveys have derived distributions of fundamental planetary properties like the frequency of planets in the mass-distance and radius-distance planes, the planetary mass function, the eccentricity distribution, or the planetary mass-radius relation. Now it is possible to compare the theoretical predictions with the observed properties of the planet population as a whole. The technique used for this comparison is known as the planet population synthesis [1-4]. One of the assumptions in this method is the migration rate of the planets. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The orbital migration may play an important role in shaping stable planetary configurations. The outcome of the simulation depends strongly on the way in which the planets migrate. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability.</p> <p class="western" lang="en-GB" align="justify">There has been recently an important development in the understanding of the orbital migration of planets which are able to open a partial gap in the protoplanetary disc (e.g. [5], [6], and references therein). It has been shown that such planets migrate differently than it has been assumed till now [7]. This subject is now at the leading edge of the studies of the dynamical interactions that occur in newly formed planetary systems. Here, we are going to present our most recent results on the two super-Earths migrating in a gaseous protoplanetary disc.</p> <p class="western" lang="en-GB" align="justify">[1] Mordasini, C., Alibert, Y., Benz, W. (2009), Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution, A&A, 501, 1139</p> <p class="western" lang="en-GB" align="justify">[2] Mordasini, C., Alibert, Y., Benz, W., Naef, D. (2009), Extrasolar planet population synthesis. II. Statisticalcomparison with observations, A&A, 501, 1139</p> <p class="western" lang="en-GB" align="justify">[3] Alibert, Y., Carron, F., Fortier, A., et al. (2013), Theoretical models of planetary system formation: mass vs. semi-major axis, A&A, 558, A109</p> <p class="western" lang="en-GB" align="justify">[4] Benz, W., Ida, S., Alibert, Y., Lin, D., & Mordasini, C. (2014), Planet Population Synthesis, Protostars and Planets VI, 691</p> <p class="western" lang="en-GB" align="justify">[5] Robert C. M. T., Crida A., Lega E., Méheut H., Morbidelli A. (2018) Toward a new paradigm for Type II migration, A&A, 617, A98</p> <p class="western" lang="en-GB" align="justify">[6] Kanagawa, K. D., Tanaka, H., & Szuszkiewicz, E, (2018), Radial migration of gap-opening planets in protoplanetary disks. I. The case of a single planet ApJ, 861, 140</p> <p class="western" lang="en-GB" align="justify">[7] Duffell, P. C., Haiman, Z., MacFadyen, A. I., D’Orazio, D. J., Farris, B. D. (2014), The Migration of  Gap-Opening Planets is not Locked to Viscous Disk Evolution , ApJL, 792, L10</p>

Author(s):  
Y Miguel ◽  
A Cridland ◽  
C W Ormel ◽  
J J Fortney ◽  
S Ida

Abstract The detection of Earth-size exoplanets around low-mass stars –in stars such as Proxima Centauri and TRAPPIST-1– provide an exceptional chance to improve our understanding of the formation of planets around M stars and brown dwarfs. We explore the formation of such planets with a population synthesis code based on a planetesimal-driven model previously used to study the formation of the Jovian satellites. Because the discs have low mass and the stars are cool, the formation is an inefficient process that happens at short periods, generating compact planetary systems. Planets can be trapped in resonances and we follow the evolution of the planets after the gas has dissipated and they undergo orbit crossings and possible mergers. We find that formation of planets above Mars mass and in the planetesimal accretion scenario, is only possible around stars with masses M⋆ ≥ 0.07Msun and discs of Mdisc ≥ 10−2 Msun. We find that planets above Earth-mass form around stars with masses larger than 0.15 Msun, while planets larger than 5 M⊕ do not form in our model, even not under the most optimal conditions (massive disc), showing that planets such as GJ 3512b form with another, more efficient mechanism. Our results show that the majority of planets form with a significant water fraction; that most of our synthetic planetary systems have 1, 2 or 3 planets, but planets with 4,5,6 and 7 planets are also common, confirming that compact planetary systems with many planets should be a relatively common outcome of planet formation around small stars.


Author(s):  
Paul Withers ◽  
Jason W. Barnes

AbstractPlanetary satellites are an integral part of the hierarchy of planetary systems. Here we make two predictions concerning their formation. First, primordial satellites, which have an array of distinguishing characteristics, form only around giant planets. If true, the size and duration of a planetary system's protostellar nebula, as well as the location of its snow line, can be constrained by knowing which of its planets possess primordial satellites and which do not. Second, all satellites around terrestrial planets form by impacts. If true, this greatly enhances the constraints that can be placed on the history of terrestrial planets by their satellites' compositions, sizes, and dynamics.


2019 ◽  
Vol 488 (3) ◽  
pp. 3625-3633 ◽  
Author(s):  
N Ndugu ◽  
B Bitsch ◽  
E Jurua

ABSTRACT Recent detailed observations of protoplanetary discs revealed a lot of substructures that are mostly ring like. One interpretation is that these rings are caused by growing planets. These potential planets are not yet opening very deep gaps in their discs. These planets instead form small gaps in the discs to generate small pressure bumps exterior to their orbits that stop the inflow of the largest dust particles. In the pebble accretion paradigm, this planetary mass corresponds to the pebble isolation mass, where pebble accretion stops and efficient gas accretion starts. We perform planet population synthesis via pebble and gas accretion including type-I and type-II migration. In the first stage of our simulations, we investigate the conditions necessary for planets to reach the pebble isolation mass and compare their position to the observed gaps. We find that in order to match the gap structures 2000ME in pebbles is needed, which would be only available for the most metal-rich stars. We then follow the evolution of these planets for a few Myr to compare the resulting population with the observed exoplanet populations. Planet formation in discs with these large amounts of pebbles results in mostly forming gas giants and only very little super-Earths, contradicting observations. This leads to the conclusions that either (i) the observed discs are exceptions, (ii) not all gaps in observed discs are caused by planets, or (iii) that we miss some important ingredients in planet formation related to gas accretion and/or planet migration.


2021 ◽  
Author(s):  
Claudia Toci ◽  
Simone Ceppi ◽  
Nicolas Cuello ◽  
Giuseppe Lodato ◽  
Cristiano Longarini ◽  
...  

<p>Binaries and multiple systems are common among young stars (Reipurth et al. 2014). These stars are often surrounded by discs of gas and dust, formed due to the conservation of angular momentum of the collapsing cloud, thought to be the site of planet formation.<br />In the case of binary systems, three discs can form: an outer disc surrounding all the stars (called circumbinary disc), and two inner discs around the stars. As circumbinary planets have recently been discovered by Kepler (see e.g., Martin 2018, Bonavita & Desidera 2020), it is crucial to understand the dynamics and evolution of circumbinary discs to better understand the initial conditions of planet formation in multiple systems.<br />The GG Tau A system is an example of a young multiple T Tauri star. The binary is surrounded by a bright disc, observed in the continuum emission at different wavelengths (see e.g., Guilloteau et al. 1999; Dutrey et al. 2014; Phuong et al. 2020b) and in scattered light (e.g., Duchene et al. 2014, Keppler et al. 2020). The disc extends in the dust from 180 to 280 au from the center of mass, and in the gas up to 850 au. The inner (<180 au) part is depleted in gas and dust. Scattered light images show a complex structure in the inner part of the disc, with arcs and filamentary structures connecting the outer ring with the arcs and three shadows.<br />Two different configurations are possible fitting the proper motion data for the system: a co-planar case with a low eccentricity binary with a semi-major axis of 34 au, explored by Cazzoletti et al. 2017 and Keppler et al. 2020, and a misaligned case (i=30) with an eccentric binary (e=0.45) and a wider semimajor axis of 60 au (Aly et al.2018). At the state of the art, all these analyses focused on the gas dynamics only.<br />We will show the results of new 3D SPH simulations of dust and gas performed with the code PHANTOM, devised to test the two possible scenarios. We will describe the dynamics of the system in the two cases, comparing our models with observational results in order to better constraint the orbital parameter of the GG Tau A system. Our predictions will guide future observing campaigns and shed light on the complex evolution of discs in triple stellar systems.</p> <p> </p>


2018 ◽  
Vol 619 ◽  
pp. A174 ◽  
Author(s):  
N. Brügger ◽  
Y. Alibert ◽  
S. Ataiee ◽  
W. Benz

Context. One of the main scenarios of planet formation is the core accretion model where a massive core forms first and then accretes a gaseous envelope. This core forms by accreting solids, either planetesimals or pebbles. A key constraint in this model is that the accretion of gas must proceed before the dissipation of the gas disc. Classical planetesimal accretion scenarios predict that the time needed to form a giant planet’s core is much longer than the time needed to dissipate the disc. This difficulty led to the development of another accretion scenario, in which cores grow by accretion of pebbles, which are much smaller and thus more easily accreted, leading to more rapid formation. Aims. The aim of this paper is to compare our updated pebble-based planet formation model with observations, in particular the well-studied metallicity effect. Methods. We adopt the Bitsch et al. (2015a, A&A, 575, A28) disc model and the Bitsch et al. (2015b, A&A, 582, A112) pebble model and use a population synthesis approach to compare the formed planets with observations. Results. We find that keeping the same parameters as in Bitsch et al. (2015b, A&A, 582, A112) leads to no planet growth due to a computation mistake in the pebble flux (2018b). Indeed a large fraction of the heavy elements should be put into pebbles (Zpeb∕Ztot = 0.9) in order to form massive planets using this approach. The resulting mass functions show a huge amount of giants and a lack of Neptune-mass planets, which are abundant according to observations. To overcome this issue we include the computation of the internal structure for the planetary atmosphere in our model. This leads to the formation of Neptune-mass planets but no observable giants. Furthermore, reducing the opacity of the planetary envelope more closely matches observations. Conclusions. We conclude that modelling the internal structure for the planetary atmosphere is necessary to reproduce observations.


2018 ◽  
Vol 619 ◽  
pp. A165 ◽  
Author(s):  
A. J. Cridland

Here a physical model for terminating giant planet formation is outlined and compared to other methods of late-stage giant planet formation. As has been pointed out before, gas accreting into a gap and onto the planet will encounter the planetary dynamo-generated magnetic field. The planetary magnetic field produces an effective cross section through which gas is accreted. Gas outside this cross section is recycled into the protoplanetary disk, hence only a fraction of mass that is accreted into the gap remains bound to the planet. This cross section inversely scales with the planetary mass, which naturally leads to stalled planetary growth late in the formation process. We show that this method naturally leads to Jupiter-mass planets and does not invoke any artificial truncation of gas accretion, as has been done in some previous population synthesis models. The mass accretion rate depends on the radius of the growing planet after the gap has opened, and we show that so-called hot-start planets tend to become more massive than cold-start planets. When this result is combined with population synthesis models, it might show observable signatures of cold-start versus hot-start planets in the exoplanet population.


2019 ◽  
Vol 624 ◽  
pp. A45 ◽  
Author(s):  
Y. Alibert

Context. Planet formation models now often consider the formation of planetary systems with more than one planet per system. This raises the question of how to represent planetary systems in a convenient way (e.g. for visualisation purpose) and how to define the similarity between two planetary systems, for example to compare models and observations. Aims. We define a new metric to infer the similarity between two planetary systems, based on the properties of planets that belong to these systems. We then compare the similarity of planetary systems with the similarity of protoplanetary discs in which they form. Methods. We first define a new metric based on mixture of Gaussians, and then use this metric to apply a dimensionality reduction technique in order to represent planetary systems (which should be represented in a high-dimensional space) in a two-dimensional space. This allows us study the structure of a population of planetary systems and its relation with the characteristics of protoplanetary discs in which planetary systems form. Results. We show that the new metric can help to find the underlying structure of populations of planetary systems. In addition, the similarity between planetary systems, as defined in this paper, is correlated with the similarity between the protoplanetary discs in which these systems form. We finally compare the distribution of inter-system distances for a set of observed exoplanets with the distributions obtained from two models: a population synthesis model and a model where planetary systems are constructed by randomly picking synthetic planets. The observed distribution is shown to be closer to the one derived from the population synthesis model than from the random systems. Conclusions. The new metric can be used in a variety of unsupervised machine learning techniques, such as dimensionality reduction and clustering, to understand the results of simulations and compare them with the properties of observed planetary systems.


2020 ◽  
Vol 637 ◽  
pp. A11 ◽  
Author(s):  
Thomas Baumann ◽  
Bertram Bitsch

Low-mass planets that are in the process of growing larger within protoplanetary disks exchange torques with the disk and change their semi-major axis accordingly. This process is called type I migration and is strongly dependent on the underlying disk structure. As a result, there are many uncertainties about planetary migration in general. In a number of simulations, the current type I migration rates lead to planets reaching the inner edge of the disk within the disk lifetime. A new kind of torque exchange between planet and disk, the thermal torque, aims to slow down inward migration via the heating torque. The heating torque may even cause planets to migrate outwards, if the planetary luminosity is large enough. Here, we study the influence on planetary migration of the thermal torque on top of previous type I models. We find that the formula of Paardekooper et al. (2011, MNRAS, 410, 293) allows for more outward migration than that of Jiménez & Masset (2017, MNRAS, 471, 4917) in most configurations, but we also find that planets evolve to very similar mass and final orbital radius using both formulae in a single planet-formation scenario, including pebble and gas accretion. Adding the thermal torque can introduce new, but small, regions of outwards migration if the accretion rates onto the planet correspond to typical solid accretion rates following the pebble accretion scenario. If the accretion rates onto the planets become very large, as could be the case in environments with large pebble fluxes (e.g., high-metallicity environments), the thermal torque can allow more efficient outward migration. However, even then, the changes for the final mass and orbital positions in our planet formation scenario are quite small. This implies that for single planet evolution scenarios, the influence of the heating torque is probably negligible.


Sign in / Sign up

Export Citation Format

Share Document