Atmospheric observations performed simultaneously in 2020-2021 by ESA’s Mars Express and Trace Gas Orbiter

2021 ◽  
Author(s):  
Alejandro Cardesin-Moinelo ◽  
Bernhard Geiger ◽  
Gaetan Lacombe ◽  
Bojan Ristic ◽  
Paulina Wolkenberg ◽  
...  
Icarus ◽  
2021 ◽  
Vol 353 ◽  
pp. 113707
Author(s):  
A. Cardesín-Moinelo ◽  
B. Geiger ◽  
G. Lacombe ◽  
B. Ristic ◽  
M. Costa ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Bruno Nava ◽  
Yenca Migoya-Orue ◽  
Anton Kashcheyev ◽  
Beatriz Sánchez-Cano ◽  
Olivier Witasse ◽  
...  

<p>Radio Occultation (RO) is a very powerful technique to probe a planetary atmosphere, in providing vertical density profiles of the neutral atmosphere and ionosphere. The standard method uses a radio link between a spacecraft and an Earth ground station. Nevertheless, the possibility to obtain information about the Martian atmosphere with mutual RO events, using data from NASA Mars Odyssey and Mars Reconnaissance Orbiters (MRO), has been demonstrated by Ao et al. (2015).<br />Taking advantage of two European spacecraft in orbit around Mars, the European Space Agency is currently preparing experiments of mutual RO between Mars Express (MEX) and the ExoMars Trace Gas Orbiter (TGO). In preparation of MEX and TGO data inversion and analysis, a simulation-based strategy has been adopted and an algorithm able to retrieve vertical electron density profiles from Doppler shift measurements has been implemented and validated. Subsequently, in order to test the mentioned algorithm with experimental data, the same three RO events considered in the paper by Ao et al. (2015) have been processed. In particular, for each RO event, having the information about the satellites’ orbit, the (excess) Doppler shift values corresponding to the Mars Odyssey-MRO ray-paths have been converted to bending angles as a function of impact parameter. Then, assuming a spherical symmetry (Fjeldbo et al., 1971) for the ionosphere electron density, the bending angles have been transformed (through Abel integral) to a vertical refractivity profile, which, in turn, has been converted to an ionospheric electron density profile.<br />In this work, the results obtained by the application of the mentioned inversion algorithm to experimental data will be presented, with particular focus on the retrieval of the ionospheric electron density profiles.</p> <p><strong>References</strong></p> <p>Ao, C. O., C. D. Edwards Jr., D. S. Kahan, X. Pi, S. W. Asmar, and A. J. Mannucci (2015), A first demonstration of Mars crosslink occultation measurements, Radio Sci., 50, 997–1007, doi:10.1002/2015RS005750.</p> <p>Fjeldbo, G., A. J. Kliore, and V. R. Eshleman (1971), The neutral atmosphere of Venus as studied with the Mariner V radio occultation<br />experiments, Astron. J., 76, 123–140.</p>


Author(s):  
Alistair J. Manning

This paper discusses some of the major issues that surround estimating regional emissions of trace gases from atmospheric observations through inversion modelling. Inversion methods use modelled knowledge of how emissions dilute in the atmosphere as they travel from their source to an observation point, together with the observations, to calculate a grid of emissions. The problem is one of minimizing the mismatch between a modelled and observed time series of concentration. There are many methods of comparing time series, some involving a priori knowledge others without. The location, terrain and height of the observation station can also be very significant in determining how well a model can represent the dilution from emission source to receptor. The inversion solution (emission map) will assign some of the sources incorrectly for a variety of reasons, e.g. local sources, intermittent releases, errors in the modelled transport or observation, and the choice of the spatial and temporal resolution of the emission map. The reasons for uncertainty in the modelled emissions are discussed along with suggestions as to how some of these can be minimized. Using multiple stations to further constrain the inversion should reduce the uncertainty; however, care is needed if the potential improvements are to be realized.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 876
Author(s):  
Alexey Panov ◽  
Anatoly Prokushkin ◽  
Karl Robert Kübler ◽  
Mikhail Korets ◽  
Anastasiya Urban ◽  
...  

Atmospheric observations of sources and sinks of carbon dioxide (CO2) and methane (CH4) in the pan-Arctic domain are highly sporadic, limiting our understanding of carbon turnover in this climatically sensitive environment and the fate of enormous carbon reservoirs buried in permafrost. Particular gaps apply to the Arctic latitudes of Siberia, covered by the vast tundra ecosystems underlain by permafrost, where only few atmospheric sites are available. The paper presents the first results of continuous observations of atmospheric CO2 and CH4 dry mole fractions at a newly operated station “DIAMIS” (73.30° N, 80.31° E) deployed on the edge of the Dikson settlement on the western coast of the Taimyr Peninsula. Atmospheric mole fractions of CO2, CH4, and H2O are measured by a CRDS analyzer Picarro G2301-f, which is regularly calibrated against WMO-traceable gases. Meteorological records permit screening of trace gas series. Here, we give the scientific rationale of the site, describe the instrumental setup, analyze the local environments, examine the seasonal footprint, and show CO2 and CH4 fluctuations for the daytime mixed atmospheric layer that is representative over a vast Arctic domain (~500–1000 km), capturing both terrestrial and oceanic signals.


2019 ◽  
Vol 12 (8) ◽  
pp. 4171-4190 ◽  
Author(s):  
Enno Peters ◽  
Mareike Ostendorf ◽  
Tim Bösch ◽  
André Seyler ◽  
Anja Schönhardt ◽  
...  

Abstract. A novel imaging-DOAS (differential optical absorption spectroscopy) instrument IMPACT (Imaging MaPper for AtmospheriC observaTions) is presented combining full-azimuthal pointing (360∘) with a large vertical coverage (∼41∘). Complete panoramic scans are acquired at a temporal resolution of ∼15 min, enabling the retrieval of NO2 vertical profiles over the entire panorama around the measurement site. IMPACT showed excellent agreement (correlation >99 %) with coincident multiaxis DOAS (MAX-DOAS) measurements during the Second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) campaign. The temporal variability of NO2 slant columns within a typical MAX-DOAS vertical scanning sequence could be resolved and was as large as 20 % in a case study under good viewing conditions. The variation of corresponding profiles and surface concentrations was even larger (40 %). This variability is missed when retrieving trace gas profiles based on standard MAX-DOAS measurements. The azimuthal distribution of NO2 around the measurement site showed inhomogeneities (relative differences) up to 120 % (on average 35 %) on short timescales (individual panoramic scans). This is more than expected for the semirural location. We explain this behavior by the transport of pollution. Exploiting the instrument's advantages, the plume's trajectory during a prominent transport event could be reconstructed. Finally, the potential for retrieving information about the aerosol phase function from O4 slant columns along multiple almucantar scans of IMPACT is demonstrated, with promising results for future studies.


2020 ◽  
Author(s):  
Bruno Nava ◽  
Anton Kashcheyev ◽  
Yenca Migoya-Orue ◽  
Sandro M. Radicella ◽  
Jacob Parrott ◽  
...  

<p>Radio Occultation is a very powerful technique to probe a planetary atmosphere, in providing vertical density profiles of the neutral atmosphere and ionosphere. The standard method uses a radio link at S and/or X band between a spacecraft and an Earth ground station. At Mars, such measurements are conducted since the 60s. The three most recent data sets are from MGS (1998-2006), Mars Express (since 2004) and MAVEN (since 2016). Taking advantage of two European spacecraft in orbit around Mars, the European Space Agency is currently preparing an experiment that consists of mutual radio occultations between Mars Express and the ExoMars Trace Gas Orbiter. Both spacecraft use UHF transceivers that are included primarily for communication between landers on the surface of Mars and the spacecraft, where the spacecraft act as relay orbiters to pass the data from the landers on to Earth. Therefore, these mutual occultations will be performed in the UHF range (centered around a frequency of 400 MHz). The feasibility of this technique on UHF was demonstrated between the NASA Mars Odyssey and Mars Reconnaissance Orbiters [Ao et al., 2015].</p><p>In this presentation, the advantages and challenges of this technique over the traditional spacecraft to Earth occultation measurements, the plans for conducting these experiments with Mars Express and the Trace Gas Orbiter, and the envisaged data processing technique will be briefly reviewed.</p><p>Before the data becomes available, and in order to prepare the data processing, a simulation-based strategy has been adopted to implement an algorithm able to retrieve vertical electron density profiles from Doppler shift measurements. More specifically, as a first step, simulated spacecraft orbits are calculated and a Chapman function is used to obtain the electron density of the Martian ionosphere. Subsequently, a numerical 3D ray-tracing algorithm [Kashcheyev et al., 2012] is applied to compute ray trajectories in the presence of the ionosphere and the relevant Doppler shift time series corresponding to the simulated radio occultation event. Then, assuming a spherical symmetry [Fjeldbo et al., 1971] for the ionosphere electron density, the (excess) Doppler data are converted to bending angles and impact parameters. Finally, the bending angle profile is inverted (through Abel integral) to a vertical refractivity profile, which, in turn, provides information about the ionospheric electron density.</p><p>For completeness, the simulation described above has been carried out with an exponential refractivity function defining the neutral atmosphere alone and with both the Chapman and the exponential refractivity functions to simulate the whole atmosphere of Mars.</p><p>The first results obtained by means of the mentioned approaches will be presented, with particular focus on the retrieval of the ionospheric electron density profiles.</p><p><strong>References</strong></p><p>Ao, C. O., C. D. Edwards Jr., D. S. Kahan, X. Pi, S. W. Asmar, and A. J. Mannucci (2015), A first demonstration of Mars crosslink occultation measurements, Radio Sci., 50, 997–1007, doi:10.1002/2015RS005750.</p><p>Fjeldbo, G., A. J. Kliore, and V. R. Eshleman (1971), The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments, Astron. J., 76, 123–140.</p><p>Kashcheyev, A., B. Nava, and S. M. Radicella (2012), Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model, Radio Sci., 47, RS4008, doi:10.1029/2011RS004976</p>


1983 ◽  
Vol 44 (C6) ◽  
pp. C6-587-C6-591
Author(s):  
D. Sourlier ◽  
O. Oehler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document