Dynamical effect on the Venusian thermal structure simulated by a general circulation model

2021 ◽  
Author(s):  
Hiroki Ando ◽  
Kotaro Takaya ◽  
Masahiro Takagi ◽  
Norihiko Sugimoto ◽  
Takeshi Imamura ◽  
...  

<div class="page" title="Page 2"> <div class="layoutArea"> <div class="column"> <p>Distributions of temperature and static stability in the Venus atmosphere consistent with recent radio occultation measurements are reproduced using a general circulation model. A low-stability layer is maintained at low- and mid-latitudes at 50–60 km altitude and is sandwiched by high- and moderate-stability layers extending above 60 and below 50  km, respectively. In the polar region, the low-stability layer is located at 46–63 km altitude and the relatively low-stability layer is also found at 40–46 km altitude. To investigate how these thermal structures form, we examine the dynamical effects of the atmospheric motions on the static stability below 65 km altitude. The results show that the heat transport due to the mean meridional circulation is important at low-latitudes. At mid- and high-latitudes, meanwhile, the baroclinic Rossby-type wave plays an important role in maintaining the thermal structure. In addition, appreciable equatorward heat transport is found to maintain the deep and low-stability layer in the polar region, which might be induced by the interaction between the baroclinic Rossby-type wave in the low-stability layer and the trapped Rossby-type wave below it.</p> </div> </div> </div>

2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


2020 ◽  
Vol 8 (9) ◽  
pp. 681
Author(s):  
Saeed Hariri

This paper describes the near-surface transport properties and Lagrangian statistics in the Adriatic semi-enclosed basin using synthetic drifters. Lagrangian transport models were used to simulate synthetic trajectories from the mean flow fields obtained by the Massachusetts Institute of Technology general circulation model (MITgcm), implemented in the Adriatic from October 2006 until December 2008. In particular, the surface circulation properties in two contrasting years (2007 had a mild winter and cold fall, while 2008 had a normal winter and hot summer) are compared here. In addition, the Lagrangian statistics for the entire Adriatic Basin after removing the Eulerian mean circulation for numerical particles were calculated. The results indicate that the numerical particles were slower in this simulation when compared with the real drifters. This is because of the reduced energetic flow field generated by the MIT general circulation model during the selected years. The numerical results showed that the balanced effects of the wind-driven recirculation in the northernmost area(which would be a sea response to the Bora wind field) and the Po River discharge cause the residence times to be similar during the two selected years (182 and 185 days in 2007 and 2008, respectively). Furthermore, the mean angular momentum, diffusivity, and Lagrangian velocity covariance values are smaller than in the real drifter observations, while the maximum Lagrangian integral time scale is the same.


2008 ◽  
Vol 21 (22) ◽  
pp. 5797-5806 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Tapio Schneider

Abstract As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.


2009 ◽  
Vol 10 (2) ◽  
pp. 353-373 ◽  
Author(s):  
Vasubandhu Misra ◽  
P. A. Dirmeyer

Abstract Multidecadal simulations over the continental United States by an atmospheric general circulation model coupled to an ocean general circulation model is compared with that forced by observed sea surface temperature (SST). The differences in the mean and the variability of precipitation are found to be larger in the boreal summer than in the winter. This is because the mean SST differences in the two simulations are qualitatively comparable between the two seasons. The analysis shows that, in the boreal summer season, differences in moisture flux convergence resulting from changes in the circulation between the two simulations initiate and sustain changes in precipitation between them. This difference in precipitation is, however, further augmented by the contributions from land surface evaporation, resulting in larger differences of precipitation between the two simulations. However, in the boreal winter season, despite differences in the moisture flux convergence between the two model integrations, the precipitation differences over the continental United States are insignificant. It is also shown that land–atmosphere feedback is comparatively much weaker in the boreal winter season.


2016 ◽  
Vol 73 (5) ◽  
pp. 1871-1887 ◽  
Author(s):  
Krzysztof Wargan ◽  
Lawrence Coy

Abstract The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.


Sign in / Sign up

Export Citation Format

Share Document