thermal tides
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kseniia Didenko ◽  
Alexander Pogoreltsev ◽  
Andrey Koval ◽  
Tatiana Ermakova

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
David Shultz

Increased tropospheric heating and reduced dissipation combine to explain an anomalously large thermal tide.


2021 ◽  
Author(s):  
Siteng Fan ◽  
Sandrine Guerlet ◽  
Francois Forget ◽  
Antoine Bierjon ◽  
Ehouarn Millour ◽  
...  

2021 ◽  
Author(s):  
Christophe Mathé ◽  
Anni Määttänen ◽  
Joachim Audouard ◽  
Constantino Listowski ◽  
Ehouarn Millour ◽  
...  

<p>In the Martian atmosphere, carbon dioxide (CO<sub>2</sub>) clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. These observed clouds can be distinguished by two kinds involving different formation processes: those formed during the winter in polar regions located in the troposphere, and those formed during the Martian year at low- and mid-northern latitudes located in the mesosphere (Määattänen et al, 2013). Microphysical processes of formation of theses clouds are still not fully understood. However, modeling studies revealed processes necessary for their formation: the requirement of waves that perturb the atmosphere leading to a temperature below the condensation of CO<sub>2</sub> (transient planetary waves for tropospheric clouds (Kuroda et al., 20123), thermal tides (Gonzalez-Galindo et al., 2011) and gravity waves for mesospheric clouds (Spiga et al., 2012)). In the last decade, a state-of-the-art microphysical column (1D) model for CO<sub>2</sub> clouds in a Martian atmosphere was developed at Laboratoire Atmosphères, Observations Spatiales (LATMOS) (Listowski et al., 2013, 2014). We use our full microphysical model of CO<sub>2</sub> clouds formation to investigate the occurrence of these CO<sub>2</sub> clouds by coupling it with the Global Climate Model (GCM) of the Laboratoire de Météorologie Dynamique (LMD) (Forget et al., 1999). Last modeling results on Martian CO<sub>2</sub> clouds properties and their impacts on the atmosphere will be presented and be compared to observational data.</p>


2021 ◽  
Author(s):  
Kylash Rajendran ◽  
Stephen R. Lewis ◽  
James A. Holmes ◽  
Paul M. Streeter ◽  
Anna A. Fedorova ◽  
...  

<p class="paragraph">The presence of an equatorial westerly jet in a planetary atmosphere is often referred to as super-rotation. On Mars, super-rotation affects – and is affected by – the distribution of dust in the atmosphere. We used data assimilation to study the interaction between dust and the equatorial jet during the MY34 Mars global dust storm (GDS). The data assimilation scheme integrated temperature and dust retrievals from the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter and the Atmospheric Chemistry Suite aboard the ExoMars Trace Gas Orbiter into a numerical model of the Martian atmosphere. This created a better representation of the atmospheric state than could be achieved from the observations or the model alone.</p> <p class="paragraph">We found that super-rotation increased by a factor of two at the peak of the GDS, as compared to the same period in the previous year which did not feature a GDS. A strong westerly jet formed in the tropical lower atmosphere, and easterlies were strengthened above 60 km, as a result of momentum transport by dust-driven thermal tides. We found that the atmosphere was in a state of enhanced super-rotation even before the onset of the GDS, as a result of equatorward advection of dust from the southern mid-latitudes into the tropics. The redistribution of dust across the hemispheres resulted in a more uniform dust distribution across the tropics, leading to a symmetric Hadley cell with a tropical upwelling branch that was closely aligned to the vertical. We argue that the symmetrical circulation and enhanced super-rotation were important environmental factors that encouraged the rapid development of the MY34 GDS.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norihiko Sugimoto ◽  
Yukiko Fujisawa ◽  
Hiroki Kashimura ◽  
Katsuyuki Noguchi ◽  
Takeshi Kuroda ◽  
...  

AbstractGravity waves play essential roles in the terrestrial atmosphere because they propagate far from source regions and transport momentum and energy globally. Gravity waves are also observed in the Venus atmosphere, but their characteristics have been poorly understood. Here we demonstrate activities of small-scale gravity waves using a high-resolution Venus general circulation model with less than 20 and 0.25 km in the horizontal and vertical grid intervals, respectively. We find spontaneous gravity wave radiation from nearly balanced flows. In the upper cloud layer (~70 km), the thermal tides in the super-rotation are primary sources of small-scale gravity waves in the low-latitudes. Baroclinic/barotropic waves are also essential sources in the mid- and high-latitudes. The small-scale gravity waves affect the three-dimensional structure of the super-rotation and contribute to material mixing through their breaking processes. They propagate vertically and transport momentum globally, which decelerates the super-rotation in the upper cloud layer (~70 km) and accelerates it above ~80 km.


2021 ◽  
Vol 39 (2) ◽  
pp. 327-339
Author(s):  
Frank T. Huang ◽  
Hans G. Mayr

Abstract. We have derived the behavior of decadal temperature trends over the 24 h of local time, based on zonal averages of SABER data, for the years 2012 to 2014, from 20 to 100 km, within 48∘ of the Equator. Similar results have not been available previously. We find that the temperature trends, based on zonal mean measurements at a fixed local time, can be different from those based on measurements made at a different fixed local time. The trends can vary significantly in local time, even from hour to hour. This agrees with some findings based on nighttime lidar measurements. This knowledge is relevant because the large majority of temperature measurements, especially in the stratosphere, are made by instruments on sun-synchronous operational satellites which measure at only one or two fixed local times, for the duration of their missions. In these cases, the zonal mean trends derived from various satellite data are tied to the specific local times at which each instrument samples the data, and the trends are then also biased by the local time. Consequently, care is needed in comparing trends based on various measurements with each other, unless the data are all measured at the same local time. Similar caution is needed when comparing with models, since the zonal means from 3D models reflect averages over both longitude and the 24 h of local time. Consideration is also needed in merging data from various sources to produce generic, continuous, longer-term records. Diurnal variations of temperature themselves, in the form of thermal tides, are well known and are due to absorption of solar radiation. We find that at least part of the reason that temperature trends are different for different local times is that the amplitudes and phases of the tides themselves follow trends over the same time span of the data. Many of the past efforts have focused on the temperature values with local time when merging data from various sources and on the effect of unintended satellite orbital drifts, which result in drifting local times at which the temperatures are measured. However, the effect of local time on trends has not been well researched. We also derive estimates of trends by simulating the drift of local time due to drifting orbits. Our comparisons with results found by others (Advanced Microwave Sounding Unit, AMSU; lidar) are favorable and informative. They may explain, at least in part, the bridge between results based on daytime AMSU data and nighttime lidar measurements. However, these examples do not form a pattern, and more comparisons and study are needed.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


Sign in / Sign up

Export Citation Format

Share Document