scholarly journals Review of esd-2016-13 A User-friendly Earth System Model of Low Complexity: The ESCIMO system dynamics model of global warming towards 2100

2016 ◽  
2016 ◽  
Author(s):  
Jorgen Randers ◽  
Ulrich Golüke ◽  
Fred Wenstøp ◽  
Søren Wenstøp

Abstract. Abstract. We have made a simple system dynamics model, ESCIMO, which runs on a desktop computer in seconds and is able to reproduce the main output from more complex climate models. ESCIMO represents the main causal mechanisms at work in the Earth system and is able to reproduce the broad outline of climate history from 1850 to 2015. We have made many simulations with ESCIMO to 2100 and beyond. In this paper we present the effects of introducing in 2015 six possible global policy interventions that cost around 1,000 billion US$ per year – around 1 % of world GDP. We tentatively conclude (a) that these policy interventions can at most reduce the global mean surface temperature – GMST – by up to 0.5 °C in 2050 and up to 1.0 °C in 2100 relative to no intervention. The exception is injection of aerosols in the stratosphere, which can reduce the GMST by more than 1.0 °C in a decade, but creates other serious problems. We also conclude (b) that relatively cheap human intervention can keep global warming in this century below +2 °C relative to preindustrial times. Finally, we conclude (c) that run-away warming is unlikely to occur in this century, but is likely to occur in the longer run. The ensuing warming is slow, however. In ESCIMO, it takes several hundred years to lift the GMST to +3 °C over preindustrial times through gradual self-reinforcing melting of the permafrost. We call for research to test whether more complex climate models support our tentative conclusions from ESCIMO.


2016 ◽  
Vol 7 (4) ◽  
pp. 831-850 ◽  
Author(s):  
Jorgen Randers ◽  
Ulrich Golüke ◽  
Fred Wenstøp ◽  
Søren Wenstøp

Abstract. We have made a simple system dynamics model, ESCIMO (Earth System Climate Interpretable Model), which runs on a desktop computer in seconds and is able to reproduce the main output from more complex climate models. ESCIMO represents the main causal mechanisms at work in the Earth system and is able to reproduce the broad outline of climate history from 1850 to 2015. We have run many simulations with ESCIMO to 2100 and beyond. In this paper we present the effects of introducing in 2015 six possible global policy interventions that cost around USD 1000 billion per year – around 1 % of world GDP. We tentatively conclude (a) that these policy interventions can at most reduce the global mean surface temperature – GMST – by up to 0.5 °C in 2050 and up to 1.0 °C in 2100 relative to no intervention. The exception is injection of aerosols into the stratosphere, which can reduce the GMST by more than 1.0 °C in a decade but creates other serious problems. We also conclude (b) that relatively cheap human intervention can keep global warming in this century below +2 °C relative to preindustrial times. Finally, we conclude (c) that run-away warming is unlikely to occur in this century but is likely to occur in the longer run. The ensuing warming is slow, however. In ESCIMO, it takes several hundred years to lift the GMST to +3 °C above preindustrial times through gradual self-reinforcing melting of the permafrost. We call for research to test whether more complex climate models support our tentative conclusions from ESCIMO. Editorial note: Please note that the acronym for the software model described in the ESD paper is now recognized to be culturally insensitive and inappropriate. The editors of the journal ESD, the journal owner European Geosciences Union, and the publisher Copernicus Publications foster equality, diversity, and inclusiveness in scientific exchange, and do not condone in any way racism, discrimination, or cultural appropriation. The authors did not intend to insult any ethnic groups by using the acronym for this software model.


2021 ◽  
Author(s):  
Bouwe Andela ◽  
Fakhereh Alidoost ◽  
Lukas Brunner ◽  
Jaro Camphuijsen ◽  
Bas Crezee ◽  
...  

<p>The Earth System Model Evaluation Tool (ESMValTool) is a free and open-source community diagnostic and performance metrics tool for the evaluation of Earth system models such as those participating in the Coupled Model Intercomparison Project (CMIP). Version 2 of the tool (Righi et al. 2020, www.esmvaltool.org) features a brand new design composed of a core that finds and processes data according to a ‘recipe’ and an extensive collection of ready-to-use recipes and associated diagnostic codes for reproducing results from published papers. Development and discussion of the tool (mostly) takes place in public on https://github.com/esmvalgroup and anyone with an interest in climate model evaluation is welcome to join there.</p><p> </p><p>Since the initial release of version 2 in the summer of 2020, many improvements have been made to the tool. It is now more user friendly with extensive documentation available on docs.esmvaltool.org and a step by step online tutorial. Regular releases, currently planned three times a year, ensure that recent contributions become available quickly while still ensuring a high level of quality control. The tool can be installed from conda, but portable docker and singularity containers are also available.</p><p> </p><p>Recent new features include a more user-friendly command-line interface, citation information per figure including CMIP6 data citation using ES-DOC, more and faster preprocessor functions that require less memory, automatic corrections for a larger number of CMIP6 datasets, support for more observational and reanalysis datasets, and more recipes and diagnostics.</p><p> </p><p>The tool is now also more reliable, with improved automated testing through more unit tests for the core, as well as a recipe testing service running at DKRZ for testing the scientific recipes and diagnostics that are bundled into the tool. The community maintaining and developing the tool is growing, making the project less dependent on individual contributors. There are now technical and scientific review teams that review new contributions for technical quality and scientific correctness and relevance respectively, two new principal investigators for generating a larger support base in the community, and a newly created user engagement team that is taking care of improving the overall user experience.</p>


2012 ◽  
Vol 9 (3) ◽  
pp. 1159-1172 ◽  
Author(s):  
A. Gnanadesikan ◽  
J. P. Dunne ◽  
J. John

Abstract. Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.


2017 ◽  
Author(s):  
Gary Shaffer ◽  
Esteban Fernández Villanueva ◽  
Roberto Rondanelli ◽  
Jens Olaf Pepke Pedersen ◽  
Steffen Malskær Olsen ◽  
...  

Abstract. Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions, for example the Triassic-Jurassic and End-Permian extinctions, 201 and 252 million years ago. In many cases evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane, formed by magma intrusions through overlying carbon-rich sediment, or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth System models should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth System Model of Intermediate Complexity. We use a generic methane input function that allows variation of input type, size, time scale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, time scales and ocean-atmosphere partitions to probe model behaviour. We find that larger methane inputs over shorter time scales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release from land soils. Analysis of synthetic sediment cores from the simulations provides guidelines for the interpretation of real sediment cores spanning the warming events. With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events.


2020 ◽  
Author(s):  
Angela Landolfi ◽  
Wolfgang Koeve

<p>Ocean warming is projected to cause marine deoxygenation, reduce solubility, affect ocean circulation and enhance metabolic rates over this century. These changes, affecting oceanic N<sub>2</sub>O production and emissions, have been suggested to potentially rise atmospheric N<sub>2</sub>O concentrations and increase the positive feedback to anthropogenic climate change.However, current global model projections all suggest a decline in marine N<sub>2</sub>O emissions under global warming but the processes leading to this decline are poorly constrained. Here, using an Earth system model of intermediate complexity, we disentangle the contribution of ocean deoxygenation and the direct and indirect warming effects on oceanic N<sub>2</sub>O production and emissions changes under RCP8.5 emission scenario. We find that ocean deoxygenation and warming-reduced N<sub>2</sub>O solubility do in fact increase oceanic N<sub>2</sub>O emissions, however this increase is overcompensated by ocean circulation slow-down and reduced export production, suggesting a neglectable N<sub>2</sub>O-emssion feedback to climate on centennial timescales.</p>


Sign in / Sign up

Export Citation Format

Share Document