scholarly journals A global assessment of gross and net land change dynamics for current conditions and future scenarios

2018 ◽  
Vol 9 (2) ◽  
pp. 441-458 ◽  
Author(s):  
Richard Fuchs ◽  
Reinhard Prestele ◽  
Peter H. Verburg

Abstract. The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30–100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5∘ grid cells was substantially larger than net changes in all parts of the world. As 0.5∘ grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as an empirical database for land change dynamics that can be applied in Earth system models and integrated assessment models.

2017 ◽  
Author(s):  
Richard Fuchs ◽  
Reinhard Prestele ◽  
Peter H. Verburg

Abstract. The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth System Models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30–100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models, by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5-degree grid cells were substantially larger than net changes in all parts of the world. As 0.5-degree grid cells are a standard resolution of Earth System Models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as empirical database for land change dynamics that can be applied in Earth System Models and Integrated Assessment Models.


2013 ◽  
Vol 17 (9) ◽  
pp. 3605-3622 ◽  
Author(s):  
N. Voisin ◽  
H. Li ◽  
D. Ward ◽  
M. Huang ◽  
M. Wigmosta ◽  
...  

Abstract. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities and predictors (withdrawals vs. consumptive demands, as well as natural vs. regulated mean flow) for configuring operating rules. Overall the best performing implementation is with combined priorities rules (flood control storage targets and irrigation release targets) set up with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.


2017 ◽  
Vol 21 (1) ◽  
pp. 217-233 ◽  
Author(s):  
Elham Rouholahnejad Freund ◽  
James W. Kirchner

Abstract. Most Earth system models are based on grid-averaged soil columns that do not communicate with one another, and that average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). These models also typically ignore topographically driven lateral redistribution of water (either as groundwater or surface flows), both within and between model grid cells. Here, we present a first attempt to quantify the effects of spatial heterogeneity and lateral redistribution on grid-cell-averaged evapotranspiration (ET) as seen from the atmosphere over heterogeneous landscapes. Our approach uses Budyko curves, as a simple model of ET as a function of atmospheric forcing by P and PET. From these Budyko curves, we derive a simple sub-grid closure relation that quantifies how spatial heterogeneity affects average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimations of average ET. For a sample high-relief grid cell in the Himalayas, this overestimation bias is shown to be roughly 12 %; for adjacent lower-relief grid cells, it is substantially smaller. We use a similar approach to derive sub-grid closure relations that quantify how lateral redistribution of water could alter average ET as seen from the atmosphere. We derive expressions for the maximum possible effect of lateral redistribution on average ET, and the amount of lateral redistribution required to achieve this effect, using only estimates of P and PET in possible source and recipient locations as inputs. We show that where the aridity index P/PET increases with altitude, gravitationally driven lateral redistribution will increase average ET (and models that overlook lateral redistribution will underestimate average ET). Conversely, where the aridity index P/PET decreases with altitude, gravitationally driven lateral redistribution will decrease average ET. The effects of both sub-grid heterogeneity and lateral redistribution will be most pronounced where P is inversely correlated with PET across the landscape. Our analysis provides first-order estimates of the magnitudes of these sub-grid effects, as a guide for more detailed modeling and analysis.


2017 ◽  
Author(s):  
Joseph H. Kennedy ◽  
Benjamin W. Mayer ◽  
Katherine J. Evans ◽  
Jeff Duracha

2013 ◽  
Vol 10 (3) ◽  
pp. 3501-3540 ◽  
Author(s):  
N. Voisin ◽  
H. Li ◽  
D. Ward ◽  
M. Huang ◽  
M. Wigmosta ◽  
...  

Abstract. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.


2020 ◽  
Author(s):  
Gitta Lasslop ◽  
Stijn Hantson ◽  
Victor Brovkin ◽  
Fang Li ◽  
David Lawrence ◽  
...  

<p>Fires are an important component in Earth system models (ESMs), they impact vegetation carbon storage, vegetation distribution, atmospheric composition and cloud formation. The representation of fires in ESMs contributing to CMIP phase 5 was still very simplified. Several Earth system models updated their representation of fires in the meantime. Using the latest simulations of CMIP6 we investigate how fire regimes change in the future for different scenarios and how land use, climate and atmospheric CO<sub>2</sub> concentration contribute to the fire regimes changes. We quantify changes in fire danger, burned area and carbon emissions on an annual and seasonal basis. Factorial model simulations allow to quantify the influence of land use, climate and atmospheric CO<sub>2</sub> on fire regimes.</p><p>We complement the information on fire regime change supplied by ESMs that include a fire module with a statistical modelling approach for burned area. This will use information from simulated changes in climate, vegetation and socioeconomic changes (population density and land use) provided for a set of different future scenarios. This allows the integration of information provided by global satellite products on burned area with the process-based simulations of climate and vegetation changes and information from socioeconomic scenarios.</p><p> </p>


2014 ◽  
Vol 11 (12) ◽  
pp. 17757-17860 ◽  
Author(s):  
E. S. Weng ◽  
S. Malyshev ◽  
J. W. Lichstein ◽  
C. E. Farrior ◽  
R. Dybzinski ◽  
...  

Abstract. The long-term and large scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water and nutrients. Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of height-structured competition for light. However, most of the current Earth System Models that predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-structured competition for light and an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition and explicit scaling from individuals to ecosystems into the land model (LM3) currently used in the Earth System Models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The height-structured formulation is based on the Perfect Plasticity Approximation (PPA), which has been shown to accurately scale from individual-level plant competition for light, water and nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the coupled LM3–PPA model is able to include a large number of phenomena across a range of spatial and temporal scales, and still retain computational tractability, as well as close linkages to mathematically tractable forms of the model. We test a range of predictions against data from temperate broadleaved forests in the northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy – the strategy that can competitively exclude all others – shifts as a function of the atmospheric CO2 concentration. This strategy is referred as an evolutionary stable strategy (ESS) in the ecological literature and is typically not the same as a productivity- or growth-maximizing strategy. Model simulations predict that C sinks caused by CO2 fertilization in forests limited by light and water will be down-regulated if allocation tracks changes in the competitive optimum. The implementation of the model in this paper is for temperate broadleaved forest trees, but the formulation of the model is general. It can be expanded to include other growth forms and physiologies simply by altering parameter values.


2021 ◽  
Author(s):  
Navid Ghajarnia ◽  
Zahra Kalantari ◽  
Georgia Destouni

<p>This paper addresses how large-scale terrestrial water cycling is represented in the land surface schemes of Earth System Models (ESMs). Good representation is essential, for example in regional planning for climate change adaptation and in preparation for hydro-climatic extremes that have recently set records world-wide in devastating consequences for societies and deaths of thousands of people. ESMs provide simulations and projections for the climate system and its interactions with the terrestrial hydrological cycle, and are widely used to study and prepare for associated impacts of climate change. However, the reliability of ESMs is unclear with regard to their representation of large-scale terrestrial hydrology and its changes and interactions between its key variables‎. Despite being crucial for model realism, analysis of co-variations among terrestrial hydrology variables is still largely missing in ESM performance evaluations. To bridge this research gap, we have studied and identified large-scale co-variation patterns between soil moisture (SM) and the main freshwater fluxes of runoff (R), precipitation (P), and evapotranspiration (ET) from observational data and across 6405 hydrological catchments in different parts and climates of the world. Furthermore, we have compared the identified observation-based relationships with those emerging from ESMs and reanalysis products. Our results show that the most strongly correlated freshwater variables based on observational data are also the most misrepresented hydrological patterns in ESMs and reanalysis simulations. In particular, we find SM and R to have the generally strongest large-scale correlations according to the observation-based data, across the numerous studied catchments with widely different hydroclimatic characteristics. Compared to the SM-R correlation signals, the observation-based correlations are overall weaker for the commonly expected closer dependencies of: R on P; ET on P; SM on P; and ET on SM. Nevertheless, this strongest SM-R correlation and the P-R correlation are the most misrepresented hydrological patterns in reanalysis products and ESMs. Our results also show that ESM outputs can perform relatively well in simulating individual hydrological variables, while exhibiting essential inconsistencies in simulated co-variations between variables. Such investigations of large-scale terrestrial hydrology representation by ESMs can enhance our understanding of fundamental ESM biases and uncertainties while providing important insights for systematic ESM improvement with regard to the large-scale hydrological cycling over the world’s continents and regional land areas.</p>


Sign in / Sign up

Export Citation Format

Share Document