scholarly journals Surface and subsurface characterisation of salt pans expressing polygonal patterns

2020 ◽  
Vol 12 (4) ◽  
pp. 2881-2898
Author(s):  
Jana Lasser ◽  
Joanna M. Nield ◽  
Lucas Goehring

Abstract. The data set described here contains information about the surface, subsurface, and environmental conditions of salt pans that express polygonal patterns in their surface salt crust (Lasser et al., 2020b; https://doi.org/10.5880/fidgeo.2020.037). Information stems from 5 field sites at Badwater Basin and 21 field sites at Owens Lake – both in central California. All data were recorded during two field campaigns from between November and December 2016 and in January 2018. Crust surfaces, including the mean diameter and fluctuations in the height of the polygonal patterns, were characterised by a terrestrial laser scanner (TLS). The data contain the resulting three-dimensional point clouds that describe these surfaces. The subsurface is characterised by grain size distributions of samples taken from depths between 5 and 100 cm below the salt crust and measured with a laser particle size analyser. Subsurface salinity profiles were recorded, and the groundwater density was also measured. Additionally, the salts present in the crust and pore water were analysed to determine their composition. To characterise the environmental conditions at Owens Lake, including the differences between nearby crust features, records were made of the temperature and relative humidity during 1 week in November 2016. The field sites are characterised by images showing the general context of each site, such as pictures of selected salt polygons, including any which were sampled, a typical core from each site at which core samples were taken, and close-ups of the salt crust morphology. Finally, two videos of salt crust growth over the course of spring 2018 and reconstructed from time lapse images are included.

2020 ◽  
Author(s):  
Jana Lasser ◽  
Joanna M. Nield ◽  
Lucas Goehring

Abstract. The data set described here contains information about the surface, subsurface and environmental conditions of salt pans that express polygonal patterns in their surface salt crust. Information stems from 5 field sites at Badwater Basin and 21 field sites at Owens Lake – both in central California. All data was recorded during two field campaigns, from between November and December, 2016, and in January 2018. Crust surfaces, including the mean diameter and fluctuations in the height of the polygonal patterns, were characterised by terrestrial laser scanner (Nield et al., 2020b), DOI 10.1594/PANGAEA.911233. The data contains the resulting three dimensional point clouds, which describe these surfaces. The subsurface is characterised by grain size distributions of samples taken from depths between 5 cm and 100 cm below the salt crust, and measured with a laser particle size analyser (Lasser and Goehring, 2020b), DOI 10.1594/PANGAEA.910996. Subsurface salinity profiles were recorded and the ground water density was also measured (Lasser and Goehring, 2020a), DOI 10.1594/PANGAEA.911059. Additionally, the salts present in the crust and pore water were analysed to determine their composition (Lasser and Karius, 2020), DOI 10.1594/PANGAEA.911239. To characterise the environmental conditions at Owens Lake, including the differences between nearby crust features, records were made of the temperature and relative humidity during one week in November 2016 (Nield et al., 2020a), DOI 10.1594/PANGAEA.911139. The field sites are characterised by images (Lasser et al., 2020), DOI 10.1594/PANGAEA.911054, showing the general context of each site, such as pictures of selected salt polygons, including any which were sampled, a typical core from each site at which core samples were taken and close-ups of the salt crust morphology. Finally, two videos of salt crust growth over the course of spring 2018 and reconstructed from time-lapse images are included (Lasser et al., 2020), DOI 10.1594/PANGAEA.911054.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


2014 ◽  
Vol 2 (1) ◽  
pp. 97-104 ◽  
Author(s):  
S. Hergarten ◽  
J. Robl ◽  
K. Stüwe

Abstract. We present a new method to extend the widely used geomorphic technique of swath profiles towards curved geomorphic structures such as river valleys. In contrast to the established method that hinges on stacking parallel cross sections, our approach does not refer to any individual profile lines, but uses the signed distance from a given baseline (for example, a valley floor) as the profile coordinate. The method can be implemented easily for arbitrary polygonal baselines and for rastered digital elevation models as well as for irregular point clouds such as laser scanner data. Furthermore it does not require any smoothness of the baseline and avoids over- and undersampling due to the curvature of the baseline. The versatility of the new method is illustrated by its application to topographic profiles across valleys, a large subduction zone, and the rim of an impact crater. Similarly to the ordinary swath profile method, the new method is not restricted to analyzing surface elevations themselves, but can aid the quantitative description of topography by analyzing other geomorphic features such as slope or local relief. It is even not constrained to geomorphic data, but can be applied to any two-dimensional data set such as temperature, precipitation or ages of rocks.


Author(s):  
J. Chen ◽  
O. E. Mora ◽  
K. C. Clarke

<p><strong>Abstract.</strong> In recent years, growing public interest in three-dimensional technology has led to the emergence of affordable platforms that can capture 3D scenes for use in a wide range of consumer applications. These platforms are often widely available, inexpensive, and can potentially find dual use in taking measurements of indoor spaces for creating indoor maps. Their affordability, however, usually comes at the cost of reduced accuracy and precision, which becomes more apparent when these instruments are pushed to their limits to scan an entire room. The point cloud measurements they produce often exhibit systematic drift and random noise that can make performing comparisons with accurate data difficult, akin to trying to compare a fuzzy trapezoid to a perfect square with sharp edges. This paper outlines a process for assessing the accuracy and precision of these imperfect point clouds in the context of indoor mapping by integrating techniques such as the extended Gaussian image, iterative closest point registration, and histogram thresholding. A case study is provided at the end to demonstrate use of this process for evaluating the performance of the Scanse Sweep 3D, an ultra-low cost panoramic laser scanner.</p>


2021 ◽  
Vol 10 (5) ◽  
pp. 316
Author(s):  
Yahya Alshawabkeh ◽  
Ahmad Baik ◽  
Yehia Miky

Digital 3D capture and reliable reproduction of architectural features is the first and most difficult step towards defining a heritage BIM. Three-dimensional digital survey technologies, such as TLS and photogrammetry, enable experts to scan buildings with a new level of detail. Challenges in the tracing of parametric objects in a TLS point cloud include the reconstruction of occluded parts, measurement of uncertainties relevant to surface reflectivity, and edge detection and location. In addition to image-based techniques being considered cost effective, highly flexible, and efficient in producing a high-quality 3D textured model, they also provide a better interpretation of surface linear characteristics. This article addresses an architecture survey workflow using photogrammetry and TLS to optimize a point cloud that is sufficient for a reliable HBIM. Fusion-based workflows were proposed during the recording of two heritage sites—the Matbouli House Museum in Historic Jeddah, a UNESCO World Heritage Site; and Asfan Castle. In the Matbouli House Museum building, which is rich with complex architectural features, multi-sensor recording was implemented at different resolutions and levels of detail. The TLS data were used to reconstruct the basic shape of the main structural elements, while the imagery’s superior radiometric data and accessibility were effectively used to enhance the TLS point clouds for improving the geometry, data interpretation, and parametric tracing of irregular objects in the facade. Furthermore, in the workflow that is considered to be the ragged terrain of the Castle of Asfan, here, the TLS point cloud was supplemented with UAV data in the upper building zones where the shadow data originated. Both datasets were registered using an ICP algorithm to scale the photogrammetric data and define their actual position in the construction system. The hybrid scans were imported and processed in the BIM environment. The building components were segmented and classified into regular and irregular surfaces, in order to perform detailed building information modeling of the architectural elements. The proposed workflows demonstrated an appropriate performance in terms of reliable and complete BIM mapping in the complex structures.


Author(s):  
M. Monego ◽  
M. Fabris ◽  
A. Menin ◽  
V. Achilli

This work describes the three-dimensional survey of “Ex Stazione Frigorifera Specializzata”: initially used for agricultural storage, during the years it was allocated to different uses until the complete neglect. The historical relevance and the architectural heritage that this building represents has brought the start of a recent renovation project and functional restoration. <br><br> In this regard it was necessary a global 3-D survey that was based on the application and integration of different geomatic methodologies (mainly terrestrial laser scanner, classical topography, and GNSS). <br><br> The acquisitions of point clouds was performed using different laser scanners: with time of flight (TOF) and phase shift technologies for the distance measurements. The topographic reference network, needed for scans alignment in the same system, was measured with a total station. For the complete survey of the building, 122 scans were acquired and 346 targets were measured from 79 vertices of the reference network. Moreover, 3 vertices were measured with GNSS methodology in order to georeference the network. For the detail survey of machine room were executed 14 scans with 23 targets. <br><br> The 3-D global model of the building have less than one centimeter of error in the alignment (for the machine room the error in alignment is not greater than 6 mm) and was used to extract products such as longitudinal and transversal sections, plans, architectural perspectives, virtual scans. <br><br> A complete spatial knowledge of the building is obtained from the processed data, providing basic information for restoration project, structural analysis, industrial and architectural heritage valorization.


Author(s):  
C. K. A. F. Che Ku Abdullah ◽  
N. Z. S. Baharuddin ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
C. L. Lau ◽  
...  

Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).


Sign in / Sign up

Export Citation Format

Share Document