scholarly journals EUREC<sup>4</sup>A

2021 ◽  
Vol 13 (8) ◽  
pp. 4067-4119
Author(s):  
Bjorn Stevens ◽  
Sandrine Bony ◽  
David Farrell ◽  
Felix Ament ◽  
Alan Blyth ◽  
...  

Abstract. The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.

2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Sandrine Bony ◽  
David Farrell ◽  
Felix Ament ◽  
Alan Blyth ◽  
...  

Abstract. The science guiding the EUREC4A campaign and its measurements are presented. EUREC4A comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic – eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice.


2021 ◽  
Author(s):  
Léa Olivier ◽  
Jacqueline Boutin ◽  
Nathalie Lefèvre ◽  
Gilles Reverdin ◽  
Peter Landschützer ◽  
...  

&lt;p&gt;Large oceanic eddies are formed by the retroflection of the North Brazil Current (NBC) near 8&amp;#176;N in the western tropical Atlantic. The EUREC&lt;sup&gt;4&lt;/sup&gt;A-OA/Atomic cruise took place in January - February 2020, and extensively documented two NBC rings. The NBC flows northward across the Equator and pass the mouth of the Amazon River, entraining fresh and nutrient-rich water along its nearshore edge. From December to March, the Amazon river discharge is low but a freshwater filament stirred by a NBC ring was nevertheless observed. The strong salinity gradient can be used to delineate the NBC ring during its initial phase and its westward propagation. Using satellite sea surface salinity and ocean color associated to in-situ measurements of salinity, temperature, dissolved inorganic carbon, alkalinity and fugacity of CO&lt;sub&gt;2&lt;/sub&gt; we characterize the salinity and biogeochemical signature of NBC rings.&lt;/p&gt;


2005 ◽  
Vol 52 (4) ◽  
pp. 647-667 ◽  
Author(s):  
Marlos Goes ◽  
Robert Molinari ◽  
Ilson da Silveira ◽  
Ilana Wainer

2019 ◽  
Author(s):  
Jiarong Li ◽  
Chao Zhu ◽  
Hui Chen ◽  
Defeng Zhao ◽  
Likun Xue ◽  
...  

Abstract. The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to understand better the microphysical properties of cloud droplets, the aerosol-cloud interactions, and the corresponding climate effect during cloud life cycles in the North China Plain, an intensive observation took place from 17 June to 30 July 2018 at the summit of Mt. Tai. Cloud microphysical parameters were monitored simultaneously with number concentrations of cloud condensation nuclei (NCCN) at different supersaturations, PM2.5 mass concentrations, particle size distributions and meteorological parameters. Number concentrations of cloud droplets (NC), liquid water content (LWC) and effective radius of cloud droplets (reff) show large variations among 40 cloud events observed during the campaign. Perturbations of aerosols will significantly increase the NC of cloud droplets and shift cloud droplets toward smaller size ranges. Clouds in clean days are more susceptible to the change in concentrations of particle number (NP). LWC shows positive correlation with reff. As NC increases, reff changes from a trimodal distribution to a unimodal distribution. By assuming a cloud thickness of 100 m, we find that the albedo can increase 36.4 % if the cloud gets to be disturbed by aerosols. This may induce a cooling effect on the local climate system. Our results contribute more information about regional cloud microphysics and will help to reduce the uncertainties in climate models when predicting climate responses to cloud-aerosol interactions.


1990 ◽  
Vol 95 (C12) ◽  
pp. 22103 ◽  
Author(s):  
William E. Johns ◽  
Thomas N. Lee ◽  
Friedrich A. Schott ◽  
Rainer J. Zantopp ◽  
Robert H. Evans

Sign in / Sign up

Export Citation Format

Share Document